Câu hỏi Đáp án 3 năm trước 90

Cho hình lăng trụ $ABC.A'B'C'$ có đáy $ABC$ là tam giác cân \(AB = AC = a;\widehat {BAC} = {120^0}\) và $AB'$ vuông góc với $\left( {A'B'C'} \right)$ . Mặt phẳng $\left( {AA'C'} \right)$ tạo với mặt phẳng $\left( {A'B'C'} \right)$ một góc \({30^0}\). Thể tích khối lăng trụ $ABC.A'B'C'$ là:

A.

\(\dfrac{{{a^3}\sqrt 3 }}{3}\)


B.

\(\dfrac{{8{a^3}}}{3}\)       


C.

\(\dfrac{{{a^3}\sqrt 3 }}{8}\)


Đáp án chính xác ✅

D.

\(\dfrac{{{a^3}\sqrt 3 }}{2}\)


Lời giải của giáo viên

verified ToanVN.com

Đáp án đúng: c
Lời giải - Đề kiểm tra 1 tiết chương 5: Khối đa diện và thể tích - Đề số 1 - ảnh 1

Trong (A’B’C’) kẻ \(B'K \bot A'C'\,\,\left( {K \in A'C'} \right)\)

Ta có:

\(\left. \begin{array}{l}AB' \bot A'C'\left( {AB' \bot \left( {A'B'C'} \right)} \right)\\B'K \bot A'C'\end{array} \right\} \Rightarrow A'C' \bot \left( {AB'K} \right) \Rightarrow A'C' \bot AK\)

\(\left. \begin{array}{l}\left( {AA'C'} \right) \cap \left( {A'B'C'} \right) = A'C'\\\left( {AA'C'} \right) \supset AK \bot A'C'\\\left( {A'B'C'} \right) \supset B'K \bot A'C'\end{array} \right\} \Rightarrow \widehat {\left( {\left( {AA'C'} \right);\left( {A'B'C'} \right)} \right)} = \widehat {\left( {AK;B'K} \right)} = \widehat {AKB'} = {30^0}\)

Ta có:

\(\begin{array}{l}{S_{A'B'C'}} = \dfrac{1}{2}A'B'.A'C'.\sin 120 = \dfrac{1}{2}{a^2}.\dfrac{{\sqrt 3 }}{2} = \dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{1}{2}B'K.A'C'\\ \Rightarrow B'K = \dfrac{{2{S_{A'B'C'}}}}{{A'C'}} = \dfrac{{\dfrac{{{a^2}\sqrt 3 }}{2}}}{a} = \dfrac{{a\sqrt 3 }}{2}\end{array}\)

\(AB' \bot \left( {A'B'C'} \right) \Rightarrow AB' \bot B'K \Rightarrow \Delta AB'K\) vuông tại B’

$ \Rightarrow AB' = B'K.tan30 = \dfrac{{a\sqrt 3 }}{2}.\dfrac{{\sqrt 3 }}{3} = \dfrac{a}{2}$

Vậy \({V_{ABC.A'B'C'}} = AB'.{S_{A'B'C'}} = \dfrac{a}{2}.\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^3}\sqrt 3 }}{8}\)

Hướng dẫn giải:

- Xác định góc giữa hai mặt phẳng: là góc giữa hai đường thẳng cùng vuông góc với giao tuyến.

- Tính diện tích đáy \({S_{A'B'C'}}\)  và đường cao \(AB'\).

- Tính thể tích khối lăng trụ theo công thức \(V = Sh\) với \(S\) là diện tích đáy, \(h\) là chiều cao.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hình lăng trụ đứng \(ABCD.A'B'C'D'\) có đáy là tứ giác đều cạnh $a$, biết rằng \(BD' = a\sqrt 6 \) . Tính thể tích của khối lăng trụ?

Xem lời giải » 3 năm trước 96
Câu 2: Trắc nghiệm

Cho khối chóp \(S.ABC\). Trên các cạnh \(SA,SB,SC\) lấy các điểm \(A',B',C'\) sao cho \(A'A = 2SA',B'B = 2SB',C'C = 2SC'\), khi đó tồn tại một phép vị tự biến khối chóp \(S.ABC\) thành khối chóp \(S.A'B'C'\) với tỉ số đồng dạng là:

Xem lời giải » 3 năm trước 95
Câu 3: Trắc nghiệm

Cho hình chóp đều $S.ABCD$ có cạnh đáy bằng $2a$. Khoảng cách giữa hai đường thẳng $SA$ và $CD$ bằng \(a\sqrt 3 \). Thể tích khối chóp $S.ABCD$ là:

Xem lời giải » 3 năm trước 95
Câu 4: Trắc nghiệm

Cho khối chóp tam giác \(S.ABC\), trên các cạnh \(SA,SB,SC\) lần lượt lấy các điểm \(A',B',C'\). Khi đó:

Xem lời giải » 3 năm trước 91
Câu 5: Trắc nghiệm

Cho hình chóp \(S.ABC\) đáy \(ABC\) là tam giác vuông tại \(A,AB = a,AC = a\sqrt 3 \). Tam giác $SBC$ đều nằm trong mặt phẳng vuông góc với đáy. Tính thể tích khối chóp $S.ABC$

Xem lời giải » 3 năm trước 91
Câu 6: Trắc nghiệm

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\). Mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAD} \right)\) cùng vuông góc với mặt phẳng \(\left( {ABCD} \right)\). Đường thẳng \(SC\) tạo với đáy góc \({45^0}\). Gọi \(M,N\) lần lượt là trung điểm của \(AB\) và \(AD\). Thể tích của khối chóp \(S.MCDN\) là:

Xem lời giải » 3 năm trước 88
Câu 7: Trắc nghiệm

Khối đa diện đều có $20$ mặt thì có bao nhiêu cạnh?

Xem lời giải » 3 năm trước 86
Câu 8: Trắc nghiệm

Khối đa diện đều loại \(\left\{ {n;p} \right\}\) thì \(n\) là:

Xem lời giải » 3 năm trước 86
Câu 9: Trắc nghiệm

Cho hai hình chóp tam giác đều cạnh đáy bằng \(a\). Cần bổ sung thêm điều kiện gì để hai hình chóp đó bằng nhau?

Xem lời giải » 3 năm trước 85
Câu 10: Trắc nghiệm

Vật thể nào trong các vật thể sau không phải là khối đa diện?

Đề kiểm tra 1 tiết chương 5: Khối đa diện và thể tích - Đề số 1 - ảnh 1

Xem lời giải » 3 năm trước 84
Câu 11: Trắc nghiệm

Cho khối lăng trụ tam giác đều \(ABC.{A_1}{B_1}{C_1}\) có tất cả các cạnh bằng \(a\). Gọi \(M\) là trung điểm của \(A{A_1}\). Thể tích khối chóp \(M.BC{A_1}\) là:

Xem lời giải » 3 năm trước 84
Câu 12: Trắc nghiệm

Phép dời hình biến đoạn thẳng thành:

Xem lời giải » 3 năm trước 84
Câu 13: Trắc nghiệm

Trong các kí hiệu sau, kí hiệu nào không phải của khối đa diện đều?

Xem lời giải » 3 năm trước 83
Câu 14: Trắc nghiệm

Cho hình lăng trụ $ABC.A’B’C’$ có độ dài tất cả các cạnh bằng $a$ và hình chiếu vuông góc của đỉnh $C$ trên $(ABB’A’)$ là tâm của hình bình hành $ABB’A’$. Thể tích của khối lăng trụ là:

Xem lời giải » 3 năm trước 82
Câu 15: Trắc nghiệm

Trong các khẳng định sau, khẳng định nào sai?

Xem lời giải » 3 năm trước 81

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »