Cho hàm số \(y = f\left( x \right)\) có đạo hàm trên \(\mathbb{R}\) và có đồ thị như hình vẽ bên. Xét hàm số \(g\left( x \right) = f\left( {{x^3} + 2x} \right) + m\). Giá trị của tham số \(m\) để giá trị lớn nhất của hàm số \(g\left( x \right)\) trên đoạn \(\left[ {0;1} \right]\) bằng \(9\) là:

A.
\(m = 10\)
B.
\(m = 6\)
C.
\(m = 12\)
D.
\(m = 8\)
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: d
Ta có : \(g'\left( x \right) = \left( {3{x^2} + 2} \right).f'\left( {{x^3} + 2x} \right)\)
\(g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}3{x^2} + 2 = 0\\f'\left( {{x^3} + 2x} \right) = 0\end{array} \right. \Leftrightarrow f'\left( {{x^3} + 2x} \right) = 0\) (Do phương trình \(3{x^2} + 2 = 0\) vô nghiệm).
Từ đồ thị hàm số \(f\left( x \right)\) đã cho ta có : \(f'\left( {{x^3} + 2x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}{x^3} + 2x = 0\\{x^3} + 2x = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = {x_0} \approx 0,77\end{array} \right.\)
Hàm số \(g\left( x \right)\) trên đoạn \(\left[ {0;1} \right]\) có :
\(\begin{array}{l}g\left( 0 \right) = f\left( 0 \right) + m = m + 1\\g\left( {{x_0}} \right) = f\left( 2 \right) + m = m - 3\\g\left( 1 \right) = f\left( 3 \right) + m = m + 1\end{array}\)
Do đó, \(\mathop {\max }\limits_{\left[ {0;1} \right]} g\left( x \right) = g\left( 0 \right) = g\left( 1 \right) = m + 1\).
Theo giả thiết, giá trị lớn nhất của hàm số \(g\left( x \right)\) trên \(\left[ {0;1} \right]\) bằng 9 nên \(m + 1 = 9 \Leftrightarrow m = 8\).
Vậy \(m = 8.\)
Hướng dẫn giải:
- Tính đạo hàm của hàm số \(y = g\left( x \right)\). Giải phương trình \(g'\left( x \right) = 0\).
- Tìm giá trị lớn nhất của hàm số trên đoạn \(\left[ {0;1} \right]\) để tìm giá trị của \(m\).
Ta có : \(g'\left( x \right) = \left( {3{x^2} + 2} \right).f'\left( {{x^3} + 2x} \right)\)
\(g'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}3{x^2} + 2 = 0\\f'\left( {{x^3} + 2x} \right) = 0\end{array} \right. \Leftrightarrow f'\left( {{x^3} + 2x} \right) = 0\) (Do phương trình \(3{x^2} + 2 = 0\) vô nghiệm).
Từ đồ thị hàm số \(f\left( x \right)\) đã cho ta có : \(f'\left( {{x^3} + 2x} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}{x^3} + 2x = 0\\{x^3} + 2x = 2\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = {x_0} \approx 0,77\end{array} \right.\)
Hàm số \(g\left( x \right)\) trên đoạn \(\left[ {0;1} \right]\) có :
\(\begin{array}{l}g\left( 0 \right) = f\left( 0 \right) + m = m + 1\\g\left( {{x_0}} \right) = f\left( 2 \right) + m = m - 3\\g\left( 1 \right) = f\left( 3 \right) + m = m + 1\end{array}\)
Do đó, \(\mathop {\max }\limits_{\left[ {0;1} \right]} g\left( x \right) = g\left( 0 \right) = g\left( 1 \right) = m + 1\).
Theo giả thiết, giá trị lớn nhất của hàm số \(g\left( x \right)\) trên \(\left[ {0;1} \right]\) bằng 9 nên \(m + 1 = 9 \Leftrightarrow m = 8\).
Vậy \(m = 8.\)
Hướng dẫn giải:
- Tính đạo hàm của hàm số \(y = g\left( x \right)\). Giải phương trình \(g'\left( x \right) = 0\).
- Tìm giá trị lớn nhất của hàm số trên đoạn \(\left[ {0;1} \right]\) để tìm giá trị của \(m\).
CÂU HỎI CÙNG CHỦ ĐỀ
Với \(a\) và \(b\) là hai số thực dương tùy ý, \(\log \left( {a{b^2}} \right)\) bằng
Tìm $m$ để hàm số $y = \dfrac{{{x^3}}}{3} - 2m{x^2} + 4mx + 2$ nghịch biến trên khoảng $\left( { - 2;0} \right)$.
Cho \(f\left( x \right)\) mà đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ bên
Bất phương trình \(f\left( x \right) > \sin \dfrac{{\pi x}}{2} + m\) nghiệm đúng với mọi \(x \in \left[ { - 1;3} \right]\) khi và chỉ khi:
Cho hàm số $y = {x^4} - 2\left( {2m + 1} \right){x^2} + 4{m^2}$$\left( 1 \right)$. Các giá trị của tham số $m$ để đồ thị hàm số $\left( 1 \right)$ cắt trục hoành tại $4$ điểm phân biệt có hoành độ ${x_1},{x_2},{x_3},{x_4}$ thoả mãn ${x_1}^2 + {x_2}^2 + {x_3}^2 + {x_4}^2 = 6$
Cho hình chóp đều $S.ABCD$ có cạnh đáy bằng $2a$. Khoảng cách giữa hai đường thẳng $SA$ và $CD$ bằng \(a\sqrt 3 \). Thể tích khối chóp $S.ABCD$ là:
Cho hàm số \(y = f(x) = a{x^3} + b{x^2} + cx + d\) có đồ thị như hình dưới đây

Có tất cả bao nhiêu giá trị nguyên của tham số \(m \in \left( { - 5;5} \right)\) để phương trình \({f^2}(x) - (m + 4)\left| {f(x)} \right| + 2m + 4 = 0\) có \(6\) nghiệm phân biệt
Tìm tất cả các giá trị của $m$ để hàm số $y = - \dfrac{1}{3}{x^3} + \dfrac{{m{x^2}}}{3} + 4$ đạt cực đại tại $x = 2?$
Đồ thị hàm số \(y = \dfrac{{ax + b}}{{2x + c}}\) có tiệm cận ngang \(y = 2\) và tiệm cận đứng \(x = 1\) thì \(a + c\) bằng
Cho khối lăng trụ tam giác đều \(ABC.{A_1}{B_1}{C_1}\) có tất cả các cạnh bằng \(a\). Gọi \(M\) là trung điểm của \(A{A_1}\). Thể tích khối chóp \(M.BC{A_1}\) là:
Có bao nhiêu cách chọn ra ba đỉnh từ các đỉnh của một hình lập phương để thu được một tam giác đều ?
Hàm số \(y = \dfrac{{3x - 6}}{{x - 2}}\) xác định khi:
Hàm số $y = a{x^4} + b{x^2} + c\left( {a \ne 0} \right)$ có $1$ cực trị nếu và chỉ nếu:
Công thức nào sau đây là công thức tăng trưởng mũ?