Cho các hàm số $y = f (x), y = g (x), y = \dfrac{{f\left( x \right) + 3}}{{g\left( x \right) + 1}}$ . Hệ số góc của các tiếp tuyến của đồ thị các hàm số đã cho tại điểm có hoành độ $x = 1$ bằng nhau và khác $0$. Khẳng định nào dưới đây là khẳng định đúng?
A.
$f\left( 1 \right) \leqslant - \dfrac{{11}}{4}$
B.
$f\left( 1 \right) < - \dfrac{{11}}{4}$
C.
$f\left( 1 \right) > - \dfrac{{11}}{4}$
D.
$f\left( 1 \right) \geqslant - \dfrac{{11}}{4}$
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: a
Ta có:
$y'=\left( \dfrac{f\left( x \right)+3}{g\left( x \right)+1} \right)'=\dfrac{f'\left( x \right)\left( g\left( x \right)+1 \right)-g'\left( x \right)\left( f\left( x \right)+3 \right)}{{{\left( g\left( x \right)+1 \right)}^{2}}}$ $\begin{array}{l} \Rightarrow \dfrac{{f'\left( 1 \right)\left( {g\left( 1 \right) + 1} \right) - g'\left( 1 \right)\left( {f\left( 1 \right) + 3} \right)}}{{{{\left( {g\left( 1 \right) + 1} \right)}^2}}} = f'\left( 1 \right) = g'\left( 1 \right)\\ \Rightarrow \dfrac{{f'\left( 1 \right)\left( {g\left( 1 \right) - f\left( 1 \right) - 2} \right)}}{{{{\left( {g\left( 1 \right) + 1} \right)}^2}}} = f'\left( 1 \right)\end{array}$
$\begin{array}{l} \Rightarrow g\left( 1 \right) - f\left( 1 \right) - 2 = {\left( {g\left( 1 \right) + 1} \right)^2}\\ \Rightarrow f\left( 1 \right) = - {g^2}\left( 1 \right) - g\left( 1 \right) - 3\end{array}$
Xét phương trình \( - {g^2}\left( 1 \right) - g\left( 1 \right) - 3 = 0\) có:
$\Delta = {\left( { - 1} \right)^2} - 4.\left( { - 1} \right).\left( { - 3} \right) = - 11 < 0;a = - 1 < 0$
$\dfrac{{ - \Delta }}{{4{\rm{a}}}} = \dfrac{{ - 11}}{4}\,\,\, \Rightarrow f\left( 1 \right) \le \dfrac{{ - 11}}{4}$
Hướng dẫn giải:
- Tính $\left( \dfrac{f\left( x \right)+3}{g\left( x \right)+1} \right)'$.
- Thay $x=1$ vào các đạo hàm $f'\left( x \right),g'\left( x \right),\left( \dfrac{f\left( x \right)+3}{g\left( x \right)+1} \right)'$ để tìm mối quan hệ của $f\left( 1 \right),g\left( 1 \right)$.
- Rút $f\left( 1 \right)$ theo $g\left( 1 \right)$ và đánh giá biểu thức chỉ chứa $g\left( 1 \right)\Rightarrow f\left( 1 \right)$.
Giải thích thêm:
HS chú ý khi đạo hàm hàm thứ 3, sử dụng công thức đạo hàm thương cần lưu ý khi xét pt bậc hai của $g(x)$ cần thấy được do $a<0$ nên đthi là parabol quay phần lõm xuống, tức là đỉnh là điểm cao nhất, tránh nhầm lẫn ngược lại dẫn đến chọn đáp án D là sai.
Ta có:
$y'=\left( \dfrac{f\left( x \right)+3}{g\left( x \right)+1} \right)'=\dfrac{f'\left( x \right)\left( g\left( x \right)+1 \right)-g'\left( x \right)\left( f\left( x \right)+3 \right)}{{{\left( g\left( x \right)+1 \right)}^{2}}}$ $\begin{array}{l} \Rightarrow \dfrac{{f'\left( 1 \right)\left( {g\left( 1 \right) + 1} \right) - g'\left( 1 \right)\left( {f\left( 1 \right) + 3} \right)}}{{{{\left( {g\left( 1 \right) + 1} \right)}^2}}} = f'\left( 1 \right) = g'\left( 1 \right)\\ \Rightarrow \dfrac{{f'\left( 1 \right)\left( {g\left( 1 \right) - f\left( 1 \right) - 2} \right)}}{{{{\left( {g\left( 1 \right) + 1} \right)}^2}}} = f'\left( 1 \right)\end{array}$
$\begin{array}{l} \Rightarrow g\left( 1 \right) - f\left( 1 \right) - 2 = {\left( {g\left( 1 \right) + 1} \right)^2}\\ \Rightarrow f\left( 1 \right) = - {g^2}\left( 1 \right) - g\left( 1 \right) - 3\end{array}$
Xét phương trình \( - {g^2}\left( 1 \right) - g\left( 1 \right) - 3 = 0\) có:
$\Delta = {\left( { - 1} \right)^2} - 4.\left( { - 1} \right).\left( { - 3} \right) = - 11 < 0;a = - 1 < 0$
$\dfrac{{ - \Delta }}{{4{\rm{a}}}} = \dfrac{{ - 11}}{4}\,\,\, \Rightarrow f\left( 1 \right) \le \dfrac{{ - 11}}{4}$
Hướng dẫn giải:
- Tính $\left( \dfrac{f\left( x \right)+3}{g\left( x \right)+1} \right)'$.
- Thay $x=1$ vào các đạo hàm $f'\left( x \right),g'\left( x \right),\left( \dfrac{f\left( x \right)+3}{g\left( x \right)+1} \right)'$ để tìm mối quan hệ của $f\left( 1 \right),g\left( 1 \right)$.
- Rút $f\left( 1 \right)$ theo $g\left( 1 \right)$ và đánh giá biểu thức chỉ chứa $g\left( 1 \right)\Rightarrow f\left( 1 \right)$.
Giải thích thêm:
HS chú ý khi đạo hàm hàm thứ 3, sử dụng công thức đạo hàm thương cần lưu ý khi xét pt bậc hai của $g(x)$ cần thấy được do $a<0$ nên đthi là parabol quay phần lõm xuống, tức là đỉnh là điểm cao nhất, tránh nhầm lẫn ngược lại dẫn đến chọn đáp án D là sai.
CÂU HỎI CÙNG CHỦ ĐỀ
Anh A mua 1 chiếc Laptop giá $23$ triệu đồng theo hình thức trả góp, lãi suất mỗi tháng là $0,5\% $. Hỏi mỗi tháng anh A phải trả cho cửa hàng bao nhiêu tiền để sau $6$ tháng anh trả hết nợ?
Trong không gian với hệ tọa độ \(Oxyz,\) cho điểm \(M\left( 1;2;3 \right).\) Mặt phẳng \(\left( P \right)\) đi qua M và cắt các tia \(Ox;\,\,Oy;\,\,Oz\) lần lượt tại các điểm \(A;\,\,B;\,\,C\) \(\left( A;\,\,B;\,\,C\ne O \right)\) sao cho thể tích của tứ diện \(OABC\) nhỏ nhất. Phương trình của mặt phẳng \(\left( P \right)\) là
Trong không gian với hệ tọa độ $Oxyz$, cho mặt phẳng \((P):x - y - z - 1 = 0\) và đường thẳng $d:\dfrac{{x + 1}}{2} = \dfrac{{y - 1}}{1} = \dfrac{{z - 2}}{3}$. Phương trình đường thẳng \(\Delta \) qua \(A(1;1; - 2)\) vuông góc với $d$ và song song với $(P)$ là:
Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $\left( S \right):{x^2} + {y^2} + {z^2} - 2{\rm{x + 4y - 4z - m = 0}}$ có bán kính $R = 5$. Tìm giá trị của $m$?
Khoảng cách từ điểm \(M\left( {2;0;1} \right)\) đến đường thẳng $\Delta :\dfrac{{x - 1}}{1} = \dfrac{y}{2} = \dfrac{{z - 2}}{1}$ là:
Cho ba điểm $A,B,C$ lần lượt biểu diễn các số phức sau \({z_1} = 1 + i;\,{z_2} = {z_1}^2;\,{z_3} = m - i\). Tìm các giá trị thực của $m$ sao cho tam giác $ABC$ vuông tại $B$.
Cho hình chóp tam giác đều $S.ABC$ có cạnh đáy bằng $a$, góc giữa cạnh bên và mặt đáy bằng \({60^0}\). Tính thể tích khối chóp $S.ABC$?
Cho hàm số $y = \dfrac{{x - 2}}{{{x^2} - 2x + m}}\left( C \right).$ Tất cả các giá trị của m để (C) có 3 đường tiệm cận là:
Cho hình chóp $S.ABC$ có $SA \bot (ABC);AC = b,AB = c,\widehat {BAC} = \alpha $. Gọi $B',C'$ lần lượt là hình chiếu vuông góc của $A$ lên $SB,SC$. Tính bán kính mặt cầu ngoại tiếp khối chóp $A.{\rm{ }}BCC'B'$ theo $b,c,\alpha $
Thể tích vật thể tròn xoay sinh ra khi quay hình phẳng giới hạn bới các đường \(x=\sqrt{y};\,y=-x+2,x=0\) quanh trục $Ox$ có giá trị là kết quả nào sau đây ?
Trong không gian $Oxyz$ cho ba vecto \(\vec a = \left( { - 1;1;0} \right),\vec b = \left( {1;1;0} \right),\vec c = \left( {1;1;1} \right)\). Mệnh đề nào dưới đây sai?
Cho hình lăng trụ $ABC.A’B’C’$ có độ dài tất cả các cạnh bằng $a$ và hình chiếu vuông góc của đỉnh $C$ trên $(ABB’A’)$ là tâm của hình bình hành $ABB’A’$. Thể tích của khối lăng trụ là:
Hãy chọn cụm từ (hoặc từ) cho dưới đây để sau khi điền nó vào chỗ trống mệnh đề sau trở thành mệnh đề đúng:
“Số cạnh của một hình đa diện luôn……………….số mặt của hình đa diện ấy”
Gọi \(G\left( {4; - 1;3} \right)\) là tọa độ trọng tâm tam giác \(ABC\) với \(A\left( {0;2; - 1} \right),B\left( { - 1;3;2} \right)\). Tìm tọa độ điểm \(C\).
Cho hai hàm số \(f,\,\,g\) liên tục trên đoạn $\left[ {a;b} \right]$ và số thực $k$ tùy ý. Trong các khẳng định sau, khẳng định nào sai ?