Đề thi HK1 môn Toán 12 năm 2021-2022 - Trường THPT Tân Châu
Đề thi HK1 môn Toán 12 năm 2021-2022 - Trường THPT Tân Châu
-
Hocon247
-
40 câu hỏi
-
60 phút
-
95 lượt thi
-
Trung bình
Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com
Hình đa diện dưới đây gồm bao nhiêu mặt
.png)
Hình đã cho có \(11\) mặt.
Chọn C.
Cho \(a\) là số thực dương tùy ý, \(\dfrac{{{a^{\dfrac{2}{3}}}.{a^{\dfrac{3}{4}}}}}{{\sqrt[6]{a}}}\) bằng
\(\dfrac{{{a^{\dfrac{2}{3}}}.{a^{\dfrac{3}{4}}}}}{{\sqrt[6]{a}}} = \dfrac{{{a^{\dfrac{{17}}{{12}}}}}}{{{a^{\dfrac{1}{6}}}}} = {a^{\dfrac{5}{4}}}\)
Chọn B.
Cho hàm số \(y = f(x)\)có đồ thị như hình vẽ. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
.png)
Dựa vào đồ thị của hàm số \(y = f(x)\), ta thấy hàm số nghịch biến trên các khoảng \(\left( { - \infty ; - 1} \right)\) và \(\left( {0;1} \right)\) nên suy ra hàm số nghịch biến trên khoảng \(\left( {0;1} \right)\).
Chọn A.
Cho khối chóp tứ giác đều \(S.ABCD\)có cạnh đáy bằng \(\sqrt 2 a\) và tam giác \(SAC\)đều. Thể tích của khối chóp đã cho bằng
\({S_{ABCD}} = {\left( {\sqrt 2 a} \right)^2} = 2{a^2}\)
Gọi \(O = AC \cap BD\)\( \Rightarrow \)\(SO \bot \left( {ABCD} \right)\)\( \Rightarrow \)\(SO\) là đường cao của chóp, \(AC = AB\sqrt 2 = 2a\)
\(SO\) là đường cao trong tam giác đều \(SAC\)\( \Rightarrow \)\(SO = \dfrac{{2a.\sqrt 3 }}{2} = a\sqrt 3 \)
Vậy \(V = \dfrac{1}{3}.2{a^2}.a\sqrt 3 = \dfrac{{2\sqrt 3 {a^3}}}{3}\).
Chọn C.
Cho khối hộp có thể tích bằng \(12{a^3}\) và diện tích mặt đáy \(4{a^2}\). Chiều cao của khối hộp đã cho bằng
\(V = B.h\) \( \Rightarrow \) \(h = \dfrac{V}{B} = \dfrac{{12{a^3}}}{{4{a^2}}} = 3a\).
Chọn C.
Cho hàm số \(y = f(x)\) liên tục trên đoạn \(\left[ { - 3;1} \right]\)và có đồ thị như hình vẽ. Gọi \(M\) và \(m\)lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn \(\left[ { - 3;1} \right]\). Giá trị của \(M - m\) bằng
.png)
Dựa vào đồ thị ta thấy : \(M = 5\), \(m = - 1\)\( \Rightarrow \)\(M - m = 6\).
Chọn A.
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên là:
Hàm số đã cho đồng biến trên khoảng nào dưới đây?
Dựa vào bảng biến thiên hàm số đồng biến trên khoảng \(\left( { - 1;3} \right)\).
Chọn A.
Đồ thị hàm số \(y = \dfrac{{2x - 1}}{{x + 3}}\) có một đường tiệm cận đứng là
Ta có: \(\mathop {\lim }\limits_{x \to - {3^ + }} \dfrac{{2x - 1}}{{x + 3}} = - \infty \Rightarrow x = - 3\) là một đường tiệm cận đứng.
Chọn C.
Tập xác định của hàm số \(y = {\left( {3x - 1} \right)^{ - 4}}\) là
Hàm số xác định khi \(3x - 1 \ne 0 \Leftrightarrow x \ne \dfrac{1}{3}\).
Vậy tập xác định của hàm số là: \(\mathbb{R}\backslash \left\{ {\dfrac{1}{3}} \right\}\).
Chọn D.
Tập xác định của hàm số \(y = \ln \left( {2x - 1} \right)\) là
Hàm số xác định khi \(2x - 1 > 0 \Leftrightarrow x > \dfrac{1}{2}\).
Vậy tập xác định của hàm số là: \(\left( {\dfrac{1}{2}; + \infty } \right)\).
Chọn C.
Cho \(a\) là số thực dương tùy ý, \(\dfrac{{{{\left( {{a^{\sqrt 7 + 1}}} \right)}^3}}}{{{a^{\sqrt 7 - 4}}.{a^{2\sqrt 7 + 9}}}}\) bằng
Ta có: \(\dfrac{{{{\left( {{a^{\sqrt 7 + 1}}} \right)}^3}}}{{{a^{\sqrt 7 - 4}}.{a^{2\sqrt 7 + 9}}}} = \dfrac{{{a^{3\sqrt 7 + 3}}}}{{{a^{3\sqrt 7 + 5}}}} = {a^{3 - 5}} = {a^{ - 2}}\).
Chọn D.
Cho khối lăng trụ \(ABC.A'B'C'\) có đáy là tam giác đều cạnh \(a\) và \(AA' = \sqrt 6 a\). Thể tích của khối lăng trụ đã cho bằng
Ta có đáy là tam giác đều cạnh \(a\) \( \Rightarrow \) Diện tích đáy là: \(\dfrac{{{a^2}\sqrt 3 }}{4}\).
Chiều cao khối lăng trụ là: \(AA' = \sqrt 6 a\).
Vậy thể tích khối lăng trụ là: \({V_{ABC.A'B'C'}} = \sqrt 6 a.\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{3\sqrt 2 {a^3}}}{4}\).
Chọn C.
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:
Giá trị cực đại của hàm số đã cho là
Hàm số đã cho đạt cực đại tại \(x = 2\) và \({y_{CD}} = 1\).
Chọn C.
Cho hàm số \(y = f\left( x \right)\) có đồ thị như hình vẽ
Điểm cực đại của đồ thị hàm số đã cho là
Đồ thị hàm số có điểm cực đại \(\left( {1;4} \right)\).
Chọn D.
Đường cong trong hình vẽ là đồ thị của hàm sô nào dưới đây?
.png)
Đồ thị hàm số có TCĐ: \(x = 1\) nên loại A, B, C.
Chọn D.
Số đỉnh của khối bát diện đều là
Khối bát diện đều có \(6\) đỉnh.
Chọn A.
Cho \(a,\,b,\,c\) là các số thực dương và khác \(1\) thỏa mãn \({\log _a}b = 3,\,{\log _a}c = - 4\). Giá trị của \({\log _a}\left( {{b^3}{c^4}} \right)\) bằng
Ta có: \({\log _a}\left( {{b^3}{c^4}} \right) = 3{\log _a}b + 4{\log _a}c\)\( = 3.3 + 4.\left( { - 4} \right) = - 7\)
Chọn A.
Số các giá trị nguyên của \(m\) để hàm số \(y = {x^3} - 3m{x^2} - \left( {12m - 15} \right)x + 7\) đồng biến trên khoảng \(\left( { - \infty ; + \infty } \right)\) là
Tập xác định: \(D = \left( { - \infty ; + \infty } \right)\). \(y' = 3{x^2} - 6mx - \left( {12m - 15} \right)\).
Ycbt \( \Leftrightarrow {\Delta _{y'}} \le 0\)\( \Leftrightarrow {m^2} + 4m - 5 \le 0 \Leftrightarrow - 5 \le m \le 1\).
Do \(m\) nguyên nên \(m\) có \(7\) giá trị là \( - 5; - 4; - 3; - 2; - 1;0;1\).
Chọn D.
Đường cong trong hình vẽ là đồ thị của hàm số nào dưới đây?
.png)
Đồ thị đã cho là dáng đồ thị hàm bậc ba có hệ số \(a < 0\).
Chọn B.
Đạo hàm của hàm số \(y = x\ln x\) trên khoảng \(\left( {0; + \infty } \right)\) là
\(y' = x'\ln x + x{\left( {\ln x} \right)^\prime } = \ln x + x.\dfrac{1}{x} \\= \ln x + 1\)
Chọn B.
Với \(a\) là số thực dương tùy ý, \({\log _5}{a^6}\) bằng
Ta có: \({\log _5}{a^6} = 6{\log _5}a\)
Chọn D.
Đồ thị hàm số nào dưới đây có đường tiệm cận ngang qua điểm \(A\left( {2;3} \right)\)
Đáp án A: TCN \(y = \dfrac{1}{3}\) loại.
Đáp án B: TCN \(y = 2\) loại.
Đáp án C: TCN \(y = \dfrac{3}{2}\) loại.
Đáp án D: TCN \(y = 3\) đi qua \(A\left( {2;3} \right)\).
Chọn D.
Cho khối chóp có thể tích bằng \(10{a^3}\) và chiều cao bằng \(5a\). Diện tích mặt đáy của khối chóp đã cho bằng
Ta có: \(V = \dfrac{1}{3}Sh\) \( \Rightarrow S = \dfrac{{3V}}{h} = \dfrac{{3.10{a^3}}}{{5a}} = 6{a^2}\).
Chọn B.
Cho khối chóp \(S.ABCD\) có đáy là hình vuông cạnh \(\sqrt 2 a\), \(SA\) vuông góc với mặt phẳng đáy và \(SA = \sqrt 3 a\). Thể tích của khối chóp đã cho bằng
Ta có đáy là hình vuông cạnh \(\sqrt 2 a\) \( \Rightarrow \) Diện tích đáy là: \(2{a^2}\).
Chiều cao khối chóp là: \(SA = \sqrt 3 a\).
Vậy thể tích khối chóp là: \({V_{S.ABCD'}} = \dfrac{1}{3}.2{a^2}.\sqrt 3 a = \dfrac{{2\sqrt 3 {a^3}}}{3}\).
Chọn C.
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:
.png)
Số nghiệm của phương trình \(3f\left( x \right) - 7 = 0\) là:
Ta có \(3f\left( x \right) - 7 = 0 \Leftrightarrow f\left( x \right) = \dfrac{7}{3} \in \left( { - 1;3} \right)\).
Suy ra phương trình đã cho có \(4\) nghiệm phân biệt.
Chọn A.
Cho hàm số có bảng biến thiên như sau:
.png)
Số các đường tiệm cận (tiệm cận đứng và tiệm cận ngang) của đồ thị hàm số đã cho bằng
Vì \(\mathop {\lim }\limits_{x \to - \infty } y = 3\) nên \(y = 3\) là đường tiệm cận ngang.
Vì \(\mathop {\lim }\limits_{x \to {1^ + }} y = + \infty \)nên \(x = 1\) là đường tiệm cận đứng.
Vậy hàm số đã cho có hai đường tiệm cận.
Chọn B.
Cho khối chóp \(S.ABC\) có thể tích bẳng \(24{a^3}\), gọi \(M\) là trung điểm \(AB\), \(N\) là điểm trên cạnh \(SB\) sao cho \(SN = 2NB\). Thể tích khối chóp \(S.MNC\) bằng
.png)
Đặt \(V = {V_{S.ABC}} = 24{a^3}\).
Ta có \({V_{S.MNC}} = {V_{S.ABC}} - {V_{S.AMC}} - {V_{B.MNC}}\)
Mà \(\dfrac{{{V_{S.AMC}}}}{{{V_{S.ABC}}}} = \dfrac{{AM}}{{AB}}.\dfrac{{AS}}{{AS}}.\dfrac{{AC}}{{AC}} = \dfrac{1}{2}\) \( \Rightarrow {V_{S.AMC}} = \dfrac{1}{2}V\)
\(\dfrac{{{V_{B.MNC}}}}{{{V_{B.ASC}}}} = \dfrac{{BM}}{{BA}}.\dfrac{{BN}}{{BS}}.\dfrac{{BC}}{{BC}}\) \( = \dfrac{1}{2}.\dfrac{1}{3}.1 = \dfrac{1}{6}\) \( \Rightarrow {V_{B.MNC}} = \dfrac{1}{6}V\)
\( \Rightarrow {V_{S.MNC}} = V - \dfrac{1}{2}V - \dfrac{1}{6}V\) \( = \dfrac{1}{3}V = 8{a^3}\)
Chọn A.
Cho khối hộp \(ABCD.A'B'C'D'\) có thể tích là \(V\), gọi \(O\) là giao điểm của \(AC\) và \(BD\). Thể tích của khối chóp \(O.A'B'C'D'\).
.png)
Ta có:
\({V_{O.ABCD}} = \dfrac{1}{3}.{S_{A'B'C'D'}}.{d_{\left( {O,\left( {A'B'C'D'} \right)} \right)}}\)\( = \dfrac{1}{3}{V_{ABCD.A'B'C'D'}} = \dfrac{V}{3}\)
Chọn A.
Cho hàm số \(y = f\left( x \right)\) có bảng xét dấu của \(f'\left( x \right)\) như sau:
Hàm số \(y = f\left( {1 - 2x} \right)\) nghịch biến trên khoảng nào dưới đây?
Ta có \(y' = - 2f'\left( {1 - 2x} \right)\).
\( - 2f'\left( {1 - 2x} \right) < 0 \Leftrightarrow f'\left( {1 - 2x} \right) > 0\)\( \Leftrightarrow \left[ \begin{array}{l}1 - 2x > 1\\ - 3 < 1 - 2x < - 1\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}x < 0\\1 < x < 2\end{array} \right.\)
Vậy hàm số nghịch biến trên \(\left( { - \infty ;0} \right)\) và \(\left( {1;2} \right)\).
Chọn D.
Cho hàm số \(y = \dfrac{{x + m}}{{x - 2}}\) thỏa mãn \(\mathop {\min }\limits_{\left[ {3;5} \right]} y = 4\). Mệnh đề nào dưới đây đúng
Hàm số \(y = \dfrac{{x + m}}{{x - 2}}\) xác định và liên tục trên \(\left[ {3;5} \right]\). Ta có \(y' = \dfrac{{ - 2 - m}}{{{{\left( {x - 2} \right)}^2}}}\).
+ Xét \( - 2 - m > 0 \Leftrightarrow m < - 2\,\,\left( * \right)\).
Khi đó hàm số đồng biến trện \(\left[ {3;5} \right]\).
Suy ra \(\mathop {\min }\limits_{\left[ {3;5} \right]} y = y\left( 3 \right) = 3 + m\). Do đó \(3 + m = 4 \Leftrightarrow m = 1\)( không thỏa \(\left( * \right)\)).
+ Xét \( - 2 - m < 0 \Leftrightarrow m > - 2\,\,\,\left( {**} \right)\).
Khi đó hàm số nghịch biến trện \(\left[ {3;5} \right]\).
Suy ra \(\mathop {\min }\limits_{\left[ {3;5} \right]} y = y\left( 5 \right) = \dfrac{{5 + m}}{3}\). Do đó \(\dfrac{{5 + m}}{3} = 4 \Leftrightarrow m = 7\)( thỏa \(\left( {**} \right)\)).
Vậy \(m = 7 > 5\).
Chọn A.
Đạo hàm của hàm số \(y = \dfrac{{2x + 1}}{{{3^x}}}\) là
Ta có: \(y' = \dfrac{{{{2.3}^x} - \left( {2x + 1} \right){3^x}\ln 3}}{{{3^{2x}}}} = \dfrac{{2 - \left( {2x + 1} \right)\ln 3}}{{{3^x}}}\).
Chọn D.
Cho hàm số \(f\left( x \right)\) có đạo hàm \(f'\left( x \right) = x{\left( {x + 3} \right)^2}\), \(\forall x \in \mathbb{R}\). Số điểm cực trị của hàm số đã cho là
\(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 3\end{array} \right.\).
Trong đó \(x = 0\) là nghiệm đơn, \(x = - 3\) là nghiệm kép
Vậy hàm số có \(1\) điểm cực trị.
Chọn B.
Cho khối hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = a\), \(AD = 2a\) và \(AC' = a\sqrt {14} \). Thể tích của khối hộp chữ nhật đã cho bằng
Ta có: \(AC = \sqrt {A{B^2} + A{D^2}} = \sqrt {{a^2} + 4{a^2}} = a\sqrt 5 \)
\(CC' = \sqrt {A{{C'}^2} - A{C^2}} = \sqrt {14{a^2} - 5{a^2}} = 3a\)
Vậy \({V_{ABCD.A'B'C'D'}} = AB.AD.CC' = a.2a.3a = 6{a^3}\).
Chọn C.
Đạo hàm của hàm số \(y = {\left( {3{x^2} - 2x + 1} \right)^{\dfrac{1}{4}}}\) là:
Ta có:
\(y' = \dfrac{1}{4}{\left( {3{x^2} - 2x + 1} \right)^{ - \dfrac{3}{4}}}.{\left( {3{x^2} - 2x + 1} \right)^\prime }\)\( = \dfrac{1}{4}{\left( {3{x^2} - 2x + 1} \right)^{ - \dfrac{3}{4}}}.\left( {6x - 2} \right)\) \( = \dfrac{{\left( {3x - 1} \right){{\left( {3{x^2} - 2x + 1} \right)}^{ - {\textstyle{3 \over 4}}}}}}{2}\)
Chọn B.
Đồ thị hàm số \(y = - 2{x^3} + 3{x^2} - 7\) có 2 điểm cực trị là \(A\) và \(B\). Diện tích tam giác \(OAB\) (với \(O\) là gốc tọa độ) bằng
Ta có: \(y' = - 6{x^2} + 6x\)
\(y' = 0 \Leftrightarrow - 6{x^2} + 6x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\end{array} \right.\)
Các điểm cực trị của đồ thị là \(A\left( {0; - 7} \right)\) và \(B\left( {1; - 6} \right)\).
Do đó: \(\overrightarrow {OA} = \left( {0; - 7} \right)\), \(\overrightarrow {OB} = \left( {1; - 6} \right)\)
Vậy \({S_{\Delta OAB}} = \dfrac{1}{2}\left| {0.\left( { - 6} \right) - 1.\left( { - 7} \right)} \right| = \dfrac{7}{2}\).
Chọn C.
Đồ thị hàm số \(y = \dfrac{{3x - 1}}{{x - 2}}\) cắt đường thẳng \(y = 2x + m\) (\(m\) là tham số) tại hai điểm phân biệt \(A\) và \(B\), giá trị nhỏ nhất của \(AB\) bằng
Phương trình hoành độ giao điểm của hai đường là: \(\dfrac{{3x - 1}}{{x - 2}} = 2x + m\).
\( \Leftrightarrow 3x - 1 = \left( {2x + m} \right)\left( {x - 2} \right)\) (vì \(x = 2\) không thỏa phương trình).
\( \Leftrightarrow 2{x^2} + \left( {m - 7} \right)x + 1 - 2m = 0\)
Ta có: \(\Delta = {m^2} + 2m + 41 > 0,\forall m \in \mathbb{R}\)
Hai đường luôn cắt nhau tại hai điểm phân biệt \(A\) và \(B\).
Gọi \(A\left( {{x_1};2{x_1} + m} \right),B\left( {{x_2};2{x_2} + m} \right).\) Khi đó: \({x_1} + {x_2} = \dfrac{{7 - m}}{2},{x_1}{x_2} = \dfrac{{1 - 2m}}{2}\)
\( \Rightarrow AB = \sqrt 5 \sqrt {{{\left( {{x_1} + {x_2}} \right)}^2} - 4{x_1}{x_2}} \)\( = \sqrt 5 \sqrt {{{\left( {\dfrac{{7 - m}}{2}} \right)}^2} - 4\left( {\dfrac{{1 - 2m}}{2}} \right)} \) \( = \dfrac{{\sqrt 5 }}{2}\sqrt {{m^2} + 2m + 41} \) \( = \dfrac{{\sqrt 5 }}{2}\sqrt {{{\left( {m + 1} \right)}^2} + 40} \)
\( \Rightarrow AB \ge \dfrac{{\sqrt 5 }}{2}\sqrt {40} = 5\sqrt 2 \).
Đẳng thức xảy ra khi \(m = - 1\)
Chọn D.
Điểm cực tiểu của đồ thị hàm số \(y = {x^3} - 6{x^2} + 9x - 2\) là
Tập xác định \(D = \mathbb{R}\).
Ta có: \(y' = 3{x^2} - 12x + 9\)
\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = 3\end{array} \right.,y'' = 6x - 12\)
\(y'''\left( 3 \right) = 6 > 0\) \( \Rightarrow {x_{CT}} = 3,{y_{CT}} = - 2\)
Suy ra đồ thị hàm số có điểm cực tiểu là \(\left( {3; - 2} \right)\).
Chọn A.
Cho khối chóp \(S.ABC\) có đáy là tam giác đều cạnh \(a\), \(SA\) vuông góc với mặt phẳng đáy và khoảng cách từ \(A\) đến mặt phẳng \(\left( {SBC} \right)\) bằng \(\dfrac{{3a}}{4}\). Tính thể tích khối chóp đã cho
Gọi \(M\) là trung điểm của \(BC\), \(H\) là hình chiếu vuông góc của \(A\) lên \(SM\).
Khi đó ta có \(AH = d\left( {A,\left( {SBC} \right)} \right)\). Ta có: \(AM = \dfrac{{a\sqrt 3 }}{2},AH = \dfrac{{3a}}{4}\).
\(\dfrac{1}{{A{H^2}}} = \dfrac{1}{{S{A^2}}} + \dfrac{1}{{A{M^2}}}\)\( \Rightarrow \dfrac{1}{{S{A^2}}} = \dfrac{4}{{9{a^2}}} \Rightarrow SA = \dfrac{{3a}}{2}\)
\(V = \dfrac{1}{3}{S_{\Delta ABC}}.SA = \dfrac{1}{3}.\dfrac{{{a^2}\sqrt 3 }}{4}.\dfrac{{3a}}{2} = \dfrac{{{a^3}\sqrt 3 }}{8}\).
Chọn B.
Số các giá trị nguyên của \(m\) để hàm số \(y = {\left( {{x^2} + 2mx + m + 20} \right)^{ - \sqrt 7 }}\) có tập xác định là khoảng \(\left( { - \infty ; + \infty } \right)\) là
Theo đề bài ta có: \({x^2} + 2mx + m + 20 > 0{\rm{ }}\forall x \in \mathbb{R}\).
\( \Leftrightarrow \Delta ' = {m^2} - m - 20 < 0 \Leftrightarrow - 4 < m < 5\).
Mà \(m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 3; - 2; - 1;0;1;2;3;4} \right\}\).
Chọn B.
Biết \({\log _{40}}75 = a + \dfrac{{{{\log }_2}3 - b}}{{c + {{\log }_2}5}}\) với \(a,{\rm{ }}b,{\rm{ }}c\) là các số nguyên dương. Giá trị của \(abc\) bằng
Cách 1:
Ta có: \({\log _{40}}75 = \dfrac{{{{\log }_2}75}}{{{{\log }_2}40}}\)\( = \dfrac{{{{\log }_2}3 + 2{{\log }_2}5}}{{3{{\log }_2}2 + {{\log }_2}5}}\) \( = \dfrac{{{{\log }_2}3 + 2{{\log }_2}5}}{{3 + {{\log }_2}5}}\) \( \Rightarrow c = 3\)
\(a + \dfrac{{{{\log }_2}3 - b}}{{c + {{\log }_2}5}} = a + \dfrac{{{{\log }_2}3 - b}}{{3 + {{\log }_2}5}}\)\( = \dfrac{{{{\log }_2}3 + \left( {a{{\log }_2}5 + 3a - b} \right)}}{{3 + {{\log }_2}5}}\)
Suy ra: \(a{\log _2}5 + 3a - b = 2{\log _2}5\)\( \Rightarrow \left\{ \begin{array}{l}a = 2\\3a - b = 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = 2\\b = 6\end{array} \right.\).
Vậy \(abc = 2.6.3 = 36\).
Cách 2:
Ta có: \({\log _{40}}75 = \dfrac{{{{\log }_2}75}}{{{{\log }_2}40}}\)\( = \dfrac{{{{\log }_2}3 + 2{{\log }_2}5}}{{{{\log }_2}40}}\) \( = \dfrac{{{{\log }_2}3 + 2\left( {{{\log }_2}40 - 3} \right)}}{{{{\log }_2}40}}\) \( = 2 + \dfrac{{{{\log }_2}3 - 6}}{{3 + {{\log }_2}5}}\)
Suy ra: \(a = 2,\,b = 6,\,c = 3\).
Vậy \(abc = 2.6.3 = 36\).
Chọn B.