Cho khối chóp \(S.ABCD\) có đáy là hình vuông cạnh \(\sqrt 2 a\), \(SA\) vuông góc với mặt phẳng đáy và \(SA = \sqrt 3 a\). Thể tích của khối chóp đã cho bằng
A. \(\dfrac{{2\sqrt 6 {a^3}}}{3}\).
B.
\(\dfrac{{\sqrt 3 {a^3}}}{3}\).
C. \(\dfrac{{2\sqrt 3 {a^3}}}{3}\).
D. \(\dfrac{{\sqrt 6 {a^3}}}{3}\).
Lời giải của giáo viên
ToanVN.com
Ta có đáy là hình vuông cạnh \(\sqrt 2 a\) \( \Rightarrow \) Diện tích đáy là: \(2{a^2}\).
Chiều cao khối chóp là: \(SA = \sqrt 3 a\).
Vậy thể tích khối chóp là: \({V_{S.ABCD'}} = \dfrac{1}{3}.2{a^2}.\sqrt 3 a = \dfrac{{2\sqrt 3 {a^3}}}{3}\).
Chọn C.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho khối chóp \(S.ABC\) có thể tích bẳng \(24{a^3}\), gọi \(M\) là trung điểm \(AB\), \(N\) là điểm trên cạnh \(SB\) sao cho \(SN = 2NB\). Thể tích khối chóp \(S.MNC\) bằng
Cho \(a\) là số thực dương tùy ý, \(\dfrac{{{{\left( {{a^{\sqrt 7 + 1}}} \right)}^3}}}{{{a^{\sqrt 7 - 4}}.{a^{2\sqrt 7 + 9}}}}\) bằng
Số các giá trị nguyên của \(m\) để hàm số \(y = {\left( {{x^2} + 2mx + m + 20} \right)^{ - \sqrt 7 }}\) có tập xác định là khoảng \(\left( { - \infty ; + \infty } \right)\) là
Đạo hàm của hàm số \(y = {\left( {3{x^2} - 2x + 1} \right)^{\dfrac{1}{4}}}\) là:
Đạo hàm của hàm số \(y = \dfrac{{2x + 1}}{{{3^x}}}\) là
Cho khối hộp \(ABCD.A'B'C'D'\) có thể tích là \(V\), gọi \(O\) là giao điểm của \(AC\) và \(BD\). Thể tích của khối chóp \(O.A'B'C'D'\).
Cho khối chóp tứ giác đều \(S.ABCD\)có cạnh đáy bằng \(\sqrt 2 a\) và tam giác \(SAC\)đều. Thể tích của khối chóp đã cho bằng
Cho hàm số \(y = f(x)\) liên tục trên đoạn \(\left[ { - 3;1} \right]\)và có đồ thị như hình vẽ. Gọi \(M\) và \(m\)lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số đã cho trên đoạn \(\left[ { - 3;1} \right]\). Giá trị của \(M - m\) bằng
.png)
Đồ thị hàm số nào dưới đây có đường tiệm cận ngang qua điểm \(A\left( {2;3} \right)\)
Cho khối hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = a\), \(AD = 2a\) và \(AC' = a\sqrt {14} \). Thể tích của khối hộp chữ nhật đã cho bằng
Số các giá trị nguyên của \(m\) để hàm số \(y = {x^3} - 3m{x^2} - \left( {12m - 15} \right)x + 7\) đồng biến trên khoảng \(\left( { - \infty ; + \infty } \right)\) là
Cho hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:
.png)
Số nghiệm của phương trình \(3f\left( x \right) - 7 = 0\) là:
Tập xác định của hàm số \(y = \ln \left( {2x - 1} \right)\) là
Cho khối chóp có thể tích bằng \(10{a^3}\) và chiều cao bằng \(5a\). Diện tích mặt đáy của khối chóp đã cho bằng