Đề thi giữa HK1 môn Toán 12 năm 2021-2022 - Trường THPT Nguyễn Viết Xuân
Đề thi giữa HK1 môn Toán 12 năm 2021-2022 - Trường THPT Nguyễn Viết Xuân
-
Hocon247
-
40 câu hỏi
-
60 phút
-
84 lượt thi
-
Dễ
Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com
Cho hàm số \(y = \sqrt {{x^2} - 6x + 5} \). Mệnh đề nào sau đây là đúng ?
\(y = \sqrt {{x^2} - 6x + 5} \)
TX Đ: \(D = ( - \infty ,1] \cup {\rm{[}}5, + \infty )\)
\(\begin{array}{l}y' = \dfrac{{x - 3}}{{\sqrt {{x^2} - 6x + 5} }}\\y' = 0 \Leftrightarrow \dfrac{{x - 3}}{{\sqrt {{x^2} - 6x + 5} }} = 0 \Leftrightarrow x = 3\\\end{array}\)
\(y'\) không xác định tại \(x=1\) và \(x=5\)
.png)
Vậy hàm số đồng biến trên \(\left( {5, + \infty } \right)\).
Cho hàm số \(y = {x^4} + 4{x^2}\) có đồ thị (C). Tìm số giao điểm của đồ thị (C) và trục hoành.
\(\begin{array}{l}
{x^4} + 4{x^2} = 0\\
\Leftrightarrow {x^2}\left( {{x^2} + 4} \right) = 0\\
\Leftrightarrow x = 0
\end{array}\)
Do đó đồ thị hàm số đã cho có 1 điểm chung với trục hoành.
Đồ thị sau đây là của hàm số \(y = {x^4} - 3{x^2} - 3\). Với giá trị nào của m thì phương trình \({x^4} - 3{x^2} + m = 0\) có ba nghiệm phân biệt ?
.png)
TXĐ: \(D = \mathbb{R}\)
\({x^4} - 3{x^2} + m \)
\({x^4} - 3{x^2} + m = 0 \)
\(\Leftrightarrow {x^4} - 3{x^2} = - m\)
\(\Leftrightarrow {x^4} - 3{x^2} - 3 = - m - 3\)
Số nghiệm của pt \({x^4} - 3{x^2} + m = 0\) chính là số giao điểm của đths \({x^4} - 3{x^2} - 3 = 0\) và đường thẳng \(y= -m - 3\)
.png)
Từ đồ thị hàm số \( \Rightarrow - m – 3 = 0 \Leftrightarrow m=0\)
Cho hàm số y = f(x) có bảng biến thiên như sau.
.png)
Hàm số đồng biến trên khoảng nào ?
Hàm số đồng biến trên khoảng (-2;3)
Hai khối chóp lần lượt có diện tích đáy, chiều cao và thể tích là \({B_1},{h_1},{V_1}\) và \({B_2},{h_2},{V_2}\). Biết \({B_1} = {B_2}\) và \({h_1} = 2{h_2}\). Khi đó \(\dfrac{{{V_1}}}{{{V_2}}}\) bằng:
Ta có: \({V_1} = \dfrac{1}{3}{B_1}{h_1} = \dfrac{2}{3}{B_2}{h_2}\)
\({V_2} = \dfrac{1}{3}{B_2}{h_2} \Rightarrow \dfrac{{{V_1}}}{{{V_2}}} = \dfrac{{\dfrac{2}{3}{B_2}{h_2}}}{{\dfrac{1}{3}{B_2}{h_2}}} = 2\)
Chọn đáp án A.
Khối chóp tam giác có thể tích \(\dfrac{{2{a^3}}}{3}\) và chiều cao \(a\sqrt 3 \) thì diện tích đáy của khối chóp bằng:
Ta có: \(V = \dfrac{1}{3}S.h \)
\(\Rightarrow \dfrac{{2{a^3}}}{3} = \dfrac{1}{3}.a\sqrt 3 .S \)
\(\Rightarrow S = \dfrac{{2{a^2}\sqrt 3 }}{3}\)
Chọn đáp án A.
Khối hộp chữ nhât. ABCD.A’B’C’D’ có AB = a, AC = 2a và AA’ = 2a. Thể tích khối hộp là:
\(BC = \sqrt {\left( {2{a^2}} \right) - {a^2}} = a\sqrt 3 \)
Ta có: \({V_{ABCD.A'B'C'D'}} = AB.BC.{\rm{AA'}}\;\)\({\rm{ = }}\;a.a\sqrt 3.2a\;\)\({\rm{ = }}\;2\sqrt 3 {a^3}\)
Chọn đáp án A.
Biết đường thẳng \(y = - {9 \over 4}x - {1 \over {24}}\) cắt đồ thị hàm số \(y = {{{x^3}} \over 3} + {{{x^2}} \over 2} - 2x\) tại một điểm duy nhất, ký hiệu (x0 ; y0) là tọa độ điểm đó. Tìm y0.
Xét pt hoành độ gio điểm tại (x0, y0) ta có :
\(\begin{array}{l} - \dfrac{9}{4}{x_0} - \dfrac{1}{{24}} = \dfrac{{{x_0}^3}}{3} + \dfrac{{{x_0}^2}}{2} - 2{x_0}\\ \Leftrightarrow 8{x_0}^3 + 12{x_0}^2 + 6{x_0} + 1 = 0\\ \Leftrightarrow {\left( {2{x_0} + 1} \right)^3} = 0\\ \Leftrightarrow 2{x_0} + 1 = 0\\ \Leftrightarrow {x_0} = - \dfrac{1}{2} \Rightarrow {y_0} = \dfrac{{13}}{{12}}\end{array}\)
Cho hàm số y = f(x) xác định , liên tục trên R và có bảng biến thiên như dưới đây.
.png)
Đồ thị hàm số y = f(x) cắt đường thẳng y = - 2018 tại bao nhiêu điểm ?
Đồ thị hàm số y = f(x) cắt đường thẳng y = - 2018 tại hai điểm phân biệt.
Có tất cả bao nhiêu giá trị nguyên của m để phương trình \({x^3} - 6{x^2} + m = 0\) có 3 nghiệm phân biệt ?
\({x^3} - 6{x^2} + m = 0 \Leftrightarrow {x^3} - 6{x^2} = - m\)
Số nghiệm của phương trình \({x^3} - 6{x^2} + m = 0\) chính là số giao điểm của đường thẳng y= -m và đths \(y = {x^3} - 6{x^2}\)
Xét \(y = {x^3} - 6{x^2}\)
TXĐ: \(D = \mathbb{R}\)
\(\begin{array}{l}y' = 3{x^2} - 12x\\y' = 0 \Leftrightarrow 3{x^2} - 12x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 4\end{array} \right.\end{array}\)
Từ BBT, pt \({x^3} - 6{x^2} + m = 0\) có 3 nghiệm phân biệt \( \Leftrightarrow \) đường thẳng y= -m cắt đths \(y = {x^3} - 6{x^2}\) tại 3 điểm \( \Leftrightarrow \) \(\begin{array}{l} - 32 < - m < 0 \Rightarrow \left\{ \begin{array}{l}0 < m < 32\\m \in \mathbb{Z}\end{array} \right.\\\end{array}\)
\( \Leftrightarrow \) có 31 giá trị của m
Trên đồ thị hàm số \(y = {{2x - 1} \over {x + 1}}\) có bao nhiêu điểm có tọa độ nguyên ?
\(\begin{array}{l}
y = \frac{{2x - 1}}{{x + 1}} = 2 - \frac{3}{{x + 1}}\\
x \in Z,y \in Z \Rightarrow x + 1 \in U\left( 3 \right)\\
\Rightarrow x + 1 \in \left\{ { \pm 1; \pm 3} \right\}\\
\Rightarrow x \in \left\{ { - 2;0; - 4;2} \right\}
\end{array}\)
Vậy có 4 điểm có tọa độ nguyên.
Cho khối chóp \(S.ABC\)có \(SA \bot \left( {ABC} \right),\) tam giác \(ABC\) vuông tại \(B\), \(AB = a,\,AC = a\sqrt 3 .\) Tính thể tích khối chóp \(S.ABC\) biết rằng \(SB = a\sqrt 5 \)
.png)
Ta có tam giác ABC vuông tại B
Áp dụng định lý Py – ta – go ta có:
\(BC = \sqrt {A{C^2} - A{B^2}} = \sqrt {3{a^2} - {a^2}} = a\sqrt 2 \)
+ \(SA = \sqrt {S{B^2} - A{B^2}} = \sqrt {5{a^2} - {a^2}} = 2a\)
Khi đó ta có:
\({V_{S.ABC}} = \dfrac{1}{3}SA.{S_{ABC}} = \dfrac{1}{3}.2a.\dfrac{1}{2}.a\sqrt 2 .a \)\(\,= \dfrac{{{a^3}\sqrt 2 }}{3}\)
Chọn đáp án B
Cho hình chóp SA BC có đáy ABC là tam giác vuông cân tại B với AC = a biết SA vuông góc với đáy ABC và SB hợp với đáy một góc 60o. Tính thể tích hình chóp
.png)
Tam giác ABC vuông cân tại B
Ta có:
\(A{B^2} + B{C^2} = A{C^2} \)
\(\Rightarrow AB = \sqrt {\dfrac{{A{C^2}}}{2}} = \dfrac{{a\sqrt 2 }}{2}\)
\(\tan {60^ \circ } = \dfrac{{SA}}{{AB}} \)
\(\Rightarrow SA = \tan {60^ \circ }.AB = \sqrt 3 .\dfrac{{a\sqrt 2 }}{2} = \dfrac{{a\sqrt 6 }}{2}\)
Khi đó ta có:
\(V = \dfrac{1}{3}SA.{S_{ABC}} = \dfrac{1}{3}.\dfrac{{a\sqrt 6 }}{2}.\dfrac{1}{2}{\left( {\dfrac{{a\sqrt 2 }}{2}} \right)^2}\)\(\, = \dfrac{{{a^3}\sqrt 6 }}{{24}}\)
Chọn đáp án A.
Cho khối chóp \(S.ABCD\)có đáy là hình vuông cạnh \(2a\). Gọi \(H\) là trung điểm cạnh \(AB\) biết \(SH \bot \left( {ABCD} \right)\) . Tính thể tích khối chóp biết tam giác \(SAB\) đều
.png)
Tam giác SAB đều
\( \Rightarrow SA = SB = AB = 2a\)
+ \(SH = \sqrt {S{A^2} - A{H^2}} = \sqrt {4{a^2} - {a^2}} = a\sqrt 3 \)
Khi đó ta có:
\({V_{S.ABCD}} = \dfrac{1}{3}SH.{S_{ABCD}} = \dfrac{1}{3}a\sqrt 3 .4{a^2} = \dfrac{{4{a^3}\sqrt 3 }}{3}\)
Chọn đáp án B
Cho hàm số y = f(x) xác định trên R\{1} và có bảng biến thiên như sau:
.png)
Mệnh đề nào sau đây đúng ?
Hàm số không có GTNN nên A sai.
Đồ thị hàm số không có TCĐ nên B sai.
Đồ thị hàm số cắt trục hoành tại 4 điểm phân biệt nên C đúng.
Hàm số không đồng biến trên \(\left( { - 1; + \infty } \right)\) nên D sai.
Cho hàm số có bảng biến thiên như sau:
.png)
Mệnh đề nào sau đây là đúng ?
Từ bbt suy ra yCT = 0
Chọn A
Đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số \(y = {{2x - 1} \over {x + 1}}\) là:
\(y = \dfrac{{2x - 1}}{{x + 1}}\)
TXĐ: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\)
\(\mathop {\lim }\limits_{x \to \pm \infty } \dfrac{{2x - 1}}{{x + 1}} = 2\)\(\) TCN : y=2
\(\left. \begin{array}{l}\mathop {\lim }\limits_{x \to {{( - 1)}^ + }} \dfrac{{2x - 1}}{{x + 1}} = - \infty \\\mathop {\lim }\limits_{x \to {{( - 1)}^ - }} \dfrac{{2x - 1}}{{x + 1}} = + \infty \end{array} \right\} \)\(\Rightarrow \) TCĐ : \(x= -1\)
Số giao điểm của đồ thị hai hàm số \(y = {x^2} - 3x - 1,\,\,y = {x^3} - 1\) là
Xét pt hoành độ giao điểm:
\(\begin{array}{l}{x^2} - 3x - 1 = {x^3} - 1\\ \Leftrightarrow {x^3} - {x^2} + 3x = 0\\ \Leftrightarrow x = 0 \Rightarrow y = - 1\end{array}\)
Cho hàm số y = f(x) có \(\mathop {\lim }\limits_{x \to - \infty } f(x) = - 2,\,\,\mathop {\lim }\limits_{x \to + \infty } f(x) = 2\). Khẳng định nào sau đây đúng ?
\(\mathop {\lim }\limits_{x \to - \infty } f(x) = - 2,\) \(\mathop {\lim }\limits_{x \to + \infty } f(x) = 2\) nên các đường thẳng \(y = - 2,y = 2\) là các đường tCN của ĐTHS.
Đồ thị sau là của hàm số nào ?
.png)
Quan sát đồ thị ta thấy đây là dáng đồ thị hàm bậc ba nên loại B.
Mà \(\mathop {\lim }\limits_{x \to + \infty } y = + \infty \Rightarrow a > 0\) nên loại A.
Điểm (-1;3) thuộc đồ thị nên chọn C.
Giá trị lớn nhất củ hàm số \(f(x) = {x^3} - 2{x^2} + x - 2\) trên đoạn [0 ; 2] bằng:
\(f\left( x \right) = {x^3} - 2{x^2} + 2x - 2\)
Với \(x \in \left[ {0,2} \right]:\)
\(\begin{array}{l}f'(x) = 3{x^2} - 4x + 1\\f'(x) = 0 \Rightarrow 3{x^2} - 4x + 1 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = \dfrac{1}{3}\end{array} \right.\end{array}\)
Có:
\(\begin{array}{l}x = 0 \Rightarrow {y{(0)}} = - 2\\x = \dfrac{1}{3} \Rightarrow {y{\left( {\dfrac{1}{3}} \right)}} = \dfrac{{ - 50}}{{27}}\\x = 1 \Rightarrow {y{(1)}} = - 2\\x = 2 \Rightarrow {y{(2)}} = 0\\ \Rightarrow \mathop {\max }\limits_{x \in \left[ {0,2} \right]} f(x) = 0\end{array}\)
Cho hình chóp SABC có đáy ABC vuông cân tại a với AB = AC = a biết tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với (ABC) ,mặt phẳng (SAC) hợp với (ABC) một góc 45o. Tính thể tích của SABC.
Tam giác SAB nằm trong mặt phẳng vuông góc với đáy.
Gọi H là trung điểm của AB
\( \Rightarrow SH \bot AB\) hay \(SH \bot \left( {ABC} \right)\)
+ Mặt phẳng (SAC) hợp với (ABC) một góc 45o
\( \Rightarrow \dfrac{{SH}}{{AH}} = \tan {45^ \circ } \Leftrightarrow SA = AH = \dfrac{a}{2}\)
Khi đó \(V = \dfrac{1}{3}SH.S{}_{ABC} = \dfrac{1}{3}.\dfrac{a}{2}.\dfrac{1}{2}a.a = \dfrac{{{a^3}}}{{12}}\)
Chọn đáp án A.
Hình chóp đều S.ABCD có cạnh đáy bằng \(2a\) và cạnh bên bằng \(3a\). Thể tích hình chóp S.ABCD ?
.png)
Chiều cao của hình chóp \(h = \sqrt {9{a^2} - 2a{}^2} = a\sqrt 7 \)
Thể tích hình chóp:\(V = \dfrac{1}{3}.h.S = \dfrac{1}{3}.a\sqrt 7 .4{a^2} = \dfrac{{4{a^3}\sqrt 7 }}{3}\)
Chọn đáp án D.
Hình chóp đều S.ABC có cạnh đáy bằng \(a\) và cạnh bên tạo với đáy một góc bằng \({30^0}\). Thể tích của hình chóp S.ABC là ?
Tam giác ABC đều, gọi H là giao điểm của các đường cao.
+ Cạnh bên tạo với đáy một góc bằng \({30^0}\)
\( \Rightarrow \tan {30^0} = \dfrac{{SH}}{{AH}}\)
Mà \(AH = \dfrac{2}{3}\sqrt {{a^2} - \dfrac{{{a^2}}}{4}} = \dfrac{2}{3}.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{a\sqrt 3 }}{3}\)
\( \Rightarrow SH = AH.\tan {30^0} = \dfrac{{a\sqrt 3 }}{3}.\dfrac{{\sqrt 3 }}{3} = \dfrac{a}{3}\)
Vậy \(V = \dfrac{1}{3}.\dfrac{a}{3}.\dfrac{1}{2}.a.a.\sin {60^0} = \dfrac{{\sqrt 3 }}{{36}}{a^3}\)
Chọn đáp án B.
Xét hình chóp S.ABC với M, N, P lần lượt là các điểm trên SA, SB, SC sao cho \(\dfrac{{SM}}{{MA}} = \dfrac{{SN}}{{NB}} = \dfrac{{SP}}{{PC}} = \dfrac{1}{2}\). Tỉ số thể tích của khối tứ diện SMNP với SABC là:
Ta có: \(\dfrac{{SM}}{{MA}} = \dfrac{{SN}}{{NB}} = \dfrac{{SP}}{{PC}} = \dfrac{1}{2} \)
\(\Rightarrow \dfrac{{SM}}{{SA}} = \dfrac{{SN}}{{SB}} = \dfrac{{SP}}{{SC}} = \dfrac{1}{3}\)
Khi đó \(\dfrac{{{V_{S.MNP}}}}{{{V_{S.ABC}}}} = \dfrac{{SM}}{{SA}}.\dfrac{{SN}}{{SB}}.\dfrac{{SP}}{{SC}} = {\left( {\dfrac{1}{3}} \right)^3} = \dfrac{1}{{27}}\)
Chọn đáp án B.
Cho khối lăng trụ đứng ABC.A’B’C’,đáy ABC là tam giác vuông tại B,AB=BC=2a,AA’=\(a\sqrt 3 \).Tính thể tích khối lăng trụ ABC.A’B’C’.
Thể tích khối lăng trụ \(V = \dfrac{1}{2}2a.2a.\sqrt 3 = 2{a^3}\sqrt 3 \)
Chọn đáp án A.
Nếu ba kích thước của một khối chữ nhật tăng lên 4 lần thì thể tích của nó tăng lên:
Thể tích hình khố chữ nhật ban đầu: \(V = abc\)
Thể tích khối mới : \({V_m} = 4a.4b.4c = 64abc\)
Chọn đáp án C.
Cho hàm số \(y = {x^3} - 3x + 1\). Tìm khẳng định đúng.
\(y = {x^3} - 3x + 1\)
TXĐ: \(D = \mathbb{R}\)
\(\begin{array}{l}y' = 3{x^2} - 3\\y' = 0 \Rightarrow 3{x^2} - 3 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 1\end{array} \right.\end{array}\)
.png)
Vậy, hàm số đồng biến trên \(\left( { - \infty , - 1} \right)\) và \(\left( {1, + \infty } \right)\)
Đường thẳng y = 4x – 1 và đồ thị hàm số \(y = {x^3} - 3{x^2} - 1\) có bao nhiêu điểm chung ?
Xét phương trình hoành độ giao điểm:
\(\begin{array}{l}4x - 1 = {x^3} - 3{x^2} - 1\\ \Leftrightarrow {x^3} - 3{x^2} - 4x = 0\\ \Leftrightarrow x\left( {{x^2} - 3x - 4} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - 1\\x = 4\end{array} \right.\end{array}\)
Số giao điểm của đường thẳng y = 4x -1 và đths \(y = {x^3} - 3{x^2} - 1\) là số nghiệm của \(4x - 1 = {x^3} - 3{x^2} - 1\)
Mặt khác, pt \(4x - 1 = {x^3} - 3{x^2} - 1\) có 3 nghiệm phân biệt nên đường thẳng và đồ thị hàm số có 3 điểm chung
Hàm số \(y = {{2x + 1} \over {x - 1}}\) có bao nhiêu điểm cực trị ?
Ta có:
\(y' = \frac{{ - 3}}{{{{\left( {x - 1} \right)}^2}}} < 0,\forall x \ne 1\) nên hàm số nghịch biến trên các khoảng \(\left( { - \infty ;1} \right),\left( {1; + \infty } \right)\).
Vậy hàm số không có điểm cực trị.
Cho hàm số \(y = {x^4} - 3{x^2} + 2\). Chọn khảng định đúng trong các khẳng định sau:
\(y = {x^4} - 3{x^2} + 2\)
TXĐ: \(D = \mathbb{R}\)
\(\begin{array}{l}y' = 4{x^3} - 6x\\y' = 0 \Rightarrow 4{x^3} - 6x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = - \dfrac{{\sqrt 6 }}{2}\\x = \dfrac{{\sqrt 6 }}{2}\end{array} \right.\end{array}\)
.png)
Vậy hàm số có 2 điểm cực tiểu và 1 điểm cực đại
Tâm đối xứng I của đồ thị hàm số \(y = - {{2x - 1} \over {x + 1}}\) là:
\(y = - \dfrac{{2x - 1}}{{x + 1}}\)
TXĐ: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\)
\(\mathop {\lim }\limits_{x \to \pm \infty } \left( { - \dfrac{{2x - 1}}{{x + 1}}} \right) = - 2 \)\(\,\Rightarrow TCN: y=-2\)
\(\left. \begin{array}{l}\mathop {\lim }\limits_{x \to {{( - 1)}^ + }} \left( { - \dfrac{{2x - 1}}{{x + 1}}} \right) = + \infty \\\mathop {\lim }\limits_{x \to {{( - 1)}^{^ - }}} \left( { - \dfrac{{2x - 1}}{{x + 1}}} \right) = - \infty \end{array} \right\}\)\(\, \Rightarrow TCĐ: x= -1\).
Vậy điểm đối xứng của đồ thị hàm số \(y = - \dfrac{{2x - 1}}{{x + 1}}\) là I( -1, -2)
Thể tích \(V\) của khối lập phương \(ABCD.A'B'C'D'\), biết \(AB = 3a\) là:
Thể tích của khối lập phương là \(V = {\left( {3a} \right)^3} = 27{a^3}\)
Chọn đáp án D.
Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a,\(\widehat {BCD} = {120^0}\) và \(AA' = \dfrac{{7a}}{2}\). Hình chiếu vuông góc của A’ lên mặt phẳng (ABCD) trùng với giao điểm của AC và BD. Tính theo a thể tích khối hộp ABCD.A’B’C’D’.
.png)
Ta có: \(\widehat {BCD} = \widehat {BAD} = {120^0}\)
\( \Rightarrow \widehat {ABC} = \widehat {ADC} = {60^0}\)
\( \Rightarrow AB = BC = AC = a\)
Áp dụng định lý Py – ta – go ta có:
\(OA' = \sqrt {A{{A'}^2} - O{A^2}} \)\(\,= \sqrt {\dfrac{{49{a^2}}}{4} - \dfrac{{{a^2}}}{4}} = 2a\sqrt 3 \)
Khi đó ta có:
\({V_{ABCD.A'B'C'D'}} = A'O.{S_{ABCD}} \)\(\,= 2a\sqrt 3 .a.a.\sin 60 = 3{a^3}\)
Chọn đáp án B.
Thể tích của khối hộp chữ nhật ABCDA’B’C’D’ có AB = a; BC = b; AA’ = c là:
Thể tích khối hộp chữ nhật là \(V = abc\)
Chọn đáp án D.
Hình nào trong các hình sau không phải là hình đa diện?
Hình vuông không phải là hình đa diện.
Chọn đáp án B.
Đồ thị các hàm số \(y = {{4x + 4} \over {x - 1}}\) và \(y = {x^2} - 1\) cắt nhau tại bao nhiêu điểm ?
Xét pt hoành độ giao điểm ta có:
\(\begin{array}{l}
\frac{{4x + 4}}{{x - 1}} = {x^2} - 1\left( {DK:x \ne 1} \right)\\
\Leftrightarrow 4x + 4 = \left( {{x^2} - 1} \right)\left( {x - 1} \right)\\
\Leftrightarrow 4\left( {x + 1} \right) = \left( {x + 1} \right){\left( {x - 1} \right)^2}\\
\Leftrightarrow \left( {x + 1} \right)\left( {{x^2} - 2x + 1 - 4} \right) = 0\\
\Leftrightarrow \left( {x + 1} \right)\left( {{x^2} - 2x - 3} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x + 1 = 0\\
{x^2} - 2x - 3 = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = - 1\\
x = - 1\\
x = 3
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = - 1\\
x = 3
\end{array} \right.
\end{array}\)
Số giao điểm của 2 đồ thị hàm số \(y = \dfrac{{4x + 4}}{{x - 1}}\) và \(y = {x^2} - 1{\rm{ }}\) là nghiệm của pt \(\dfrac{{4x + 4}}{{x - 1}} = {x^2} - 1{\rm{ }}\)
\( \Rightarrow \) 2 đồ thị cắt nhau tại 2 điểm
Cho hàm số \(y = {1 \over 3}{x^3} + 2{x^2} + (m + 1)x + 5\). Tìm tất cả các giá trị của tham số m để hàm số đồng biến trên R.
\(y = \dfrac{1}{3}{x^3} + 2{x^2} + \left( {m + 1} \right)x + 5\)
TXĐ: \(D = \mathbb{R}\)
\(y' = {x^2} + 4x + (m + 1)\)
Hàm số đồng biến trên \(\mathbb{R}\)
\(\begin{array}{l} \Leftrightarrow y' \ge 0;\forall x \in \mathbb{R}\\ \Leftrightarrow \Delta ' \le 0\\ \Leftrightarrow 4 - (m + 1) \le 0\\ \Leftrightarrow m + 1 \ge 4\\ \Leftrightarrow m \ge 3\end{array}\)
Cho hàm số y = f(x) xác định và có đạo hàm \(f'(x) = 2{x^2}\) trên R. Chọn kết luận đúng:
Ta thấy, \(f'\left( x \right) = 2{x^2} \ge 0,\forall x\) và \(f'\left( x \right) = 0 \Leftrightarrow x = 0\) nên hàm số đồng biến trên \(\mathbb{R}\).
Chọn khẳng định sai:
Tâm đối xứng của đồ thị hàm số có thể không nằm trên đồ thị hàm số.
Chẳng hạn đồ thị hàm phân thức bậc nhất trên bậc nhất là giao của hai đường tiệm cận.
Do đó B sai.