Đề thi giữa HK1 môn Toán 12 năm 2021-2022 - Trường THPT Nguyễn Viết Xuân

Đề thi giữa HK1 môn Toán 12 năm 2021-2022 - Trường THPT Nguyễn Viết Xuân

  • Hocon247

  • 40 câu hỏi

  • 60 phút

  • 84 lượt thi

  • Dễ

Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com

Câu 1: Trắc nghiệm ID: 248127

Cho hàm số \(y = \sqrt {{x^2} - 6x + 5} \). Mệnh đề nào sau đây là đúng ?

Xem đáp án

\(y = \sqrt {{x^2} - 6x + 5} \)

TX Đ: \(D = ( - \infty ,1] \cup {\rm{[}}5, + \infty )\)

\(\begin{array}{l}y' = \dfrac{{x - 3}}{{\sqrt {{x^2} - 6x + 5} }}\\y' = 0 \Leftrightarrow \dfrac{{x - 3}}{{\sqrt {{x^2} - 6x + 5} }} = 0 \Leftrightarrow x = 3\\\end{array}\)

\(y'\) không xác định tại \(x=1\) và \(x=5\)

 

Vậy hàm số đồng biến trên  \(\left( {5, + \infty } \right)\).

Câu 2: Trắc nghiệm ID: 248128

Cho hàm số \(y = {x^4} + 4{x^2}\) có đồ thị (C). Tìm số giao điểm của đồ thị (C) và trục hoành.

Xem đáp án

\(\begin{array}{l}
{x^4} + 4{x^2} = 0\\
\Leftrightarrow {x^2}\left( {{x^2} + 4} \right) = 0\\
\Leftrightarrow x = 0
\end{array}\)

Do đó đồ thị hàm số đã cho có 1 điểm chung với trục hoành.

Câu 3: Trắc nghiệm ID: 248129

Đồ thị sau đây là của hàm số \(y = {x^4} - 3{x^2} - 3\). Với giá trị nào của m thì phương trình \({x^4} - 3{x^2} + m = 0\) có ba nghiệm phân biệt ?

Xem đáp án

TXĐ: \(D = \mathbb{R}\)

\({x^4} - 3{x^2} + m \)    

\({x^4} - 3{x^2} + m = 0 \)

\(\Leftrightarrow {x^4} - 3{x^2} =  - m\)

\(\Leftrightarrow {x^4} - 3{x^2} - 3 =  - m - 3\)

Số nghiệm của pt \({x^4} - 3{x^2} + m = 0\) chính là số giao điểm của đths \({x^4} - 3{x^2} - 3 = 0\) và đường thẳng \(y= -m - 3\)

Từ  đồ thị hàm số \( \Rightarrow - m – 3 = 0 \Leftrightarrow m=0\)

Câu 4: Trắc nghiệm ID: 248130

Cho hàm số y = f(x) có bảng biến thiên như sau.

Hàm số đồng  biến trên khoảng nào ?

Xem đáp án

Hàm số đồng  biến trên khoảng (-2;3)

Câu 5: Trắc nghiệm ID: 248131

Hai khối chóp lần lượt có diện tích đáy, chiều cao và thể tích là \({B_1},{h_1},{V_1}\) và \({B_2},{h_2},{V_2}\). Biết \({B_1} = {B_2}\) và \({h_1} = 2{h_2}\). Khi đó \(\dfrac{{{V_1}}}{{{V_2}}}\) bằng:

Xem đáp án

Ta có: \({V_1} = \dfrac{1}{3}{B_1}{h_1} = \dfrac{2}{3}{B_2}{h_2}\)

\({V_2} = \dfrac{1}{3}{B_2}{h_2} \Rightarrow \dfrac{{{V_1}}}{{{V_2}}} = \dfrac{{\dfrac{2}{3}{B_2}{h_2}}}{{\dfrac{1}{3}{B_2}{h_2}}} = 2\)

Chọn đáp án A.

Câu 6: Trắc nghiệm ID: 248132

Khối chóp tam giác có thể tích \(\dfrac{{2{a^3}}}{3}\) và chiều cao \(a\sqrt 3 \) thì diện tích đáy của khối chóp bằng:

Xem đáp án

Ta có: \(V = \dfrac{1}{3}S.h \)

\(\Rightarrow \dfrac{{2{a^3}}}{3} = \dfrac{1}{3}.a\sqrt 3 .S \)

\(\Rightarrow S = \dfrac{{2{a^2}\sqrt 3 }}{3}\)

Chọn đáp án A.

Câu 7: Trắc nghiệm ID: 248133

Khối hộp chữ nhât. ABCD.A’B’C’D’ có AB = a, AC = 2a và AA’ = 2a. Thể tích khối hộp là:

Xem đáp án

\(BC = \sqrt {\left( {2{a^2}} \right) - {a^2}}  = a\sqrt 3 \)

Ta có: \({V_{ABCD.A'B'C'D'}} = AB.BC.{\rm{AA'}}\;\)\({\rm{ = }}\;a.a\sqrt 3.2a\;\)\({\rm{ = }}\;2\sqrt 3 {a^3}\)

Chọn đáp án A.

Câu 8: Trắc nghiệm ID: 248134

Biết đường thẳng \(y =  - {9 \over 4}x - {1 \over {24}}\) cắt đồ thị hàm số \(y = {{{x^3}} \over 3} + {{{x^2}} \over 2} - 2x\) tại một điểm duy nhất, ký hiệu (x0 ; y0) là tọa độ điểm đó. Tìm y0.

Xem đáp án

Xét pt hoành độ gio điểm tại (x0, y0) ta có :

\(\begin{array}{l} - \dfrac{9}{4}{x_0} - \dfrac{1}{{24}} = \dfrac{{{x_0}^3}}{3} + \dfrac{{{x_0}^2}}{2} - 2{x_0}\\ \Leftrightarrow 8{x_0}^3 + 12{x_0}^2 + 6{x_0} + 1 = 0\\ \Leftrightarrow {\left( {2{x_0} + 1} \right)^3} = 0\\ \Leftrightarrow 2{x_0} + 1 = 0\\ \Leftrightarrow {x_0} =  - \dfrac{1}{2} \Rightarrow {y_0} = \dfrac{{13}}{{12}}\end{array}\)

Câu 10: Trắc nghiệm ID: 248136

Có tất cả bao nhiêu giá trị nguyên của m để phương trình \({x^3} - 6{x^2} + m = 0\) có 3 nghiệm phân  biệt ?

Xem đáp án

\({x^3} - 6{x^2} + m = 0 \Leftrightarrow {x^3} - 6{x^2} =  - m\)

Số nghiệm của phương trình \({x^3} - 6{x^2} + m = 0\) chính là số giao điểm của đường thẳng y= -m và đths \(y = {x^3} - 6{x^2}\)

Xét \(y = {x^3} - 6{x^2}\)

TXĐ: \(D = \mathbb{R}\)

\(\begin{array}{l}y' = 3{x^2} - 12x\\y' = 0 \Leftrightarrow 3{x^2} - 12x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 4\end{array} \right.\end{array}\)

Từ  BBT, pt \({x^3} - 6{x^2} + m = 0\) có 3 nghiệm phân biệt \( \Leftrightarrow \)  đường thẳng y= -m cắt đths \(y = {x^3} - 6{x^2}\) tại 3 điểm \( \Leftrightarrow \) \(\begin{array}{l} - 32 <  - m < 0 \Rightarrow \left\{ \begin{array}{l}0 < m < 32\\m \in \mathbb{Z}\end{array} \right.\\\end{array}\)

\( \Leftrightarrow \) có 31 giá trị của m

Câu 11: Trắc nghiệm ID: 248137

Trên đồ thị hàm số \(y = {{2x - 1} \over {x + 1}}\) có bao nhiêu điểm có tọa độ nguyên ?

Xem đáp án

\(\begin{array}{l}
y = \frac{{2x - 1}}{{x + 1}} = 2 - \frac{3}{{x + 1}}\\
x \in Z,y \in Z \Rightarrow x + 1 \in U\left( 3 \right)\\
\Rightarrow x + 1 \in \left\{ { \pm 1; \pm 3} \right\}\\
\Rightarrow x \in \left\{ { - 2;0; - 4;2} \right\}
\end{array}\)

Vậy có 4 điểm có tọa độ nguyên.

Câu 12: Trắc nghiệm ID: 248138

Cho khối chóp \(S.ABC\)có \(SA \bot \left( {ABC} \right),\) tam giác \(ABC\) vuông tại \(B\), \(AB = a,\,AC = a\sqrt 3 .\) Tính thể tích khối chóp \(S.ABC\) biết rằng \(SB = a\sqrt 5 \)

Xem đáp án

Ta có tam giác ABC vuông tại B

Áp dụng định lý Py – ta – go ta có:

\(BC = \sqrt {A{C^2} - A{B^2}}  = \sqrt {3{a^2} - {a^2}}  = a\sqrt 2 \)

+ \(SA = \sqrt {S{B^2} - A{B^2}}  = \sqrt {5{a^2} - {a^2}}  = 2a\)

Khi đó ta có:

\({V_{S.ABC}} = \dfrac{1}{3}SA.{S_{ABC}} = \dfrac{1}{3}.2a.\dfrac{1}{2}.a\sqrt 2 .a \)\(\,= \dfrac{{{a^3}\sqrt 2 }}{3}\)

Chọn đáp án B

Câu 13: Trắc nghiệm ID: 248139

Cho hình chóp SA BC có đáy ABC là tam giác vuông cân tại B với AC = a  biết SA  vuông góc với đáy ABC và SB hợp với đáy một góc 60o. Tính thể tích hình chóp

Xem đáp án

Tam giác ABC vuông cân tại B

Ta có:

\(A{B^2} + B{C^2} = A{C^2} \)

\(\Rightarrow AB = \sqrt {\dfrac{{A{C^2}}}{2}}  = \dfrac{{a\sqrt 2 }}{2}\)

\(\tan {60^ \circ } = \dfrac{{SA}}{{AB}} \)

\(\Rightarrow SA = \tan {60^ \circ }.AB = \sqrt 3 .\dfrac{{a\sqrt 2 }}{2} = \dfrac{{a\sqrt 6 }}{2}\)

Khi đó ta có:

\(V = \dfrac{1}{3}SA.{S_{ABC}} = \dfrac{1}{3}.\dfrac{{a\sqrt 6 }}{2}.\dfrac{1}{2}{\left( {\dfrac{{a\sqrt 2 }}{2}} \right)^2}\)\(\, = \dfrac{{{a^3}\sqrt 6 }}{{24}}\)

Chọn đáp án A.

Câu 14: Trắc nghiệm ID: 248140

Cho khối chóp \(S.ABCD\)có đáy là hình vuông cạnh \(2a\). Gọi \(H\) là trung điểm cạnh \(AB\) biết \(SH \bot \left( {ABCD} \right)\) . Tính thể tích khối chóp biết tam giác \(SAB\) đều

Xem đáp án

Tam giác SAB đều

\( \Rightarrow SA = SB = AB = 2a\)

+ \(SH = \sqrt {S{A^2} - A{H^2}}  = \sqrt {4{a^2} - {a^2}}  = a\sqrt 3 \)

Khi đó ta có:

\({V_{S.ABCD}} = \dfrac{1}{3}SH.{S_{ABCD}} = \dfrac{1}{3}a\sqrt 3 .4{a^2} = \dfrac{{4{a^3}\sqrt 3 }}{3}\)

Chọn đáp án B

Câu 15: Trắc nghiệm ID: 248141

Cho hàm số y = f(x) xác định trên  R\{1} và có bảng biến thiên như sau:

 

Mệnh đề nào sau đây đúng ?

Xem đáp án

Hàm số không có GTNN nên A sai.

Đồ thị hàm số không có TCĐ nên B sai.

Đồ thị hàm số cắt trục hoành tại 4 điểm phân biệt nên C đúng.

 Hàm số không đồng biến trên \(\left( { - 1; + \infty } \right)\) nên D sai.

Câu 16: Trắc nghiệm ID: 248142

Cho hàm số có bảng biến thiên như sau:

 

Mệnh đề nào sau đây là đúng ?

Xem đáp án

Từ bbt suy ra yCT = 0 

Chọn A

Câu 17: Trắc nghiệm ID: 248143

Đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số \(y = {{2x - 1} \over {x + 1}}\) là:

Xem đáp án

\(y = \dfrac{{2x - 1}}{{x + 1}}\)

TXĐ: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\)

\(\mathop {\lim }\limits_{x \to  \pm \infty } \dfrac{{2x - 1}}{{x + 1}} = 2\)\(\) TCN : y=2

\(\left. \begin{array}{l}\mathop {\lim }\limits_{x \to {{( - 1)}^ + }} \dfrac{{2x - 1}}{{x + 1}} =  - \infty \\\mathop {\lim }\limits_{x \to {{( - 1)}^ - }} \dfrac{{2x - 1}}{{x + 1}} =  + \infty \end{array} \right\} \)\(\Rightarrow \) TCĐ : \(x= -1\)

Câu 18: Trắc nghiệm ID: 248144

Số giao điểm của đồ thị hai hàm số \(y = {x^2} - 3x - 1,\,\,y = {x^3} - 1\) là

Xem đáp án

Xét pt hoành độ giao điểm:

\(\begin{array}{l}{x^2} - 3x - 1 = {x^3} - 1\\ \Leftrightarrow {x^3} - {x^2} + 3x = 0\\ \Leftrightarrow x = 0 \Rightarrow y =  - 1\end{array}\)

Câu 19: Trắc nghiệm ID: 248145

Cho hàm số y = f(x) có \(\mathop {\lim }\limits_{x \to  - \infty } f(x) =  - 2,\,\,\mathop {\lim }\limits_{x \to  + \infty } f(x) = 2\). Khẳng định nào sau đây đúng ?

Xem đáp án

\(\mathop {\lim }\limits_{x \to  - \infty } f(x) =  - 2,\) \(\mathop {\lim }\limits_{x \to  + \infty } f(x) = 2\) nên các đường thẳng \(y =  - 2,y = 2\) là các đường tCN của ĐTHS.

Câu 20: Trắc nghiệm ID: 248146

Đồ thị sau là của hàm số nào ?

 

Xem đáp án

Quan sát đồ thị ta thấy đây là dáng đồ thị hàm bậc ba nên loại B.

Mà \(\mathop {\lim }\limits_{x \to  + \infty } y =  + \infty  \Rightarrow a > 0\) nên loại A.

Điểm (-1;3) thuộc đồ thị nên chọn C.

Câu 21: Trắc nghiệm ID: 248147

Giá trị lớn nhất củ hàm số \(f(x) = {x^3} - 2{x^2} + x - 2\) trên đoạn [0 ; 2] bằng:

Xem đáp án

\(f\left( x \right) = {x^3} - 2{x^2} + 2x - 2\)

Với \(x \in \left[ {0,2} \right]:\)

\(\begin{array}{l}f'(x) = 3{x^2} - 4x + 1\\f'(x) = 0 \Rightarrow 3{x^2} - 4x + 1 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = \dfrac{1}{3}\end{array} \right.\end{array}\)

Có:

\(\begin{array}{l}x = 0 \Rightarrow {y{(0)}} =  - 2\\x = \dfrac{1}{3} \Rightarrow {y{\left( {\dfrac{1}{3}} \right)}} = \dfrac{{ - 50}}{{27}}\\x = 1 \Rightarrow {y{(1)}} =  - 2\\x = 2 \Rightarrow {y{(2)}} = 0\\ \Rightarrow \mathop {\max }\limits_{x \in \left[ {0,2} \right]} f(x) = 0\end{array}\)

Câu 22: Trắc nghiệm ID: 248148

Cho hình chóp SABC có đáy ABC vuông cân tại a với AB = AC = a biết tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với (ABC) ,mặt phẳng (SAC) hợp với (ABC) một góc 45o. Tính thể tích của SABC.

Xem đáp án

Tam giác SAB nằm trong mặt phẳng vuông góc với đáy.

Gọi H là trung điểm của AB

\( \Rightarrow SH \bot AB\) hay \(SH \bot \left( {ABC} \right)\)

+ Mặt phẳng (SAC) hợp với (ABC) một góc 45o

\( \Rightarrow \dfrac{{SH}}{{AH}} = \tan {45^ \circ } \Leftrightarrow SA = AH = \dfrac{a}{2}\)

Khi đó \(V = \dfrac{1}{3}SH.S{}_{ABC} = \dfrac{1}{3}.\dfrac{a}{2}.\dfrac{1}{2}a.a = \dfrac{{{a^3}}}{{12}}\)

Chọn đáp án A.

Câu 23: Trắc nghiệm ID: 248149

Hình chóp đều S.ABCD có cạnh đáy bằng \(2a\) và cạnh bên bằng \(3a\). Thể tích hình chóp S.ABCD ?

Xem đáp án

Chiều cao của hình chóp \(h = \sqrt {9{a^2} - 2a{}^2}  = a\sqrt 7 \)

Thể tích hình chóp:\(V = \dfrac{1}{3}.h.S = \dfrac{1}{3}.a\sqrt 7 .4{a^2} = \dfrac{{4{a^3}\sqrt 7 }}{3}\)

Chọn đáp án D.

Câu 24: Trắc nghiệm ID: 248150

 Hình chóp đều S.ABC có cạnh đáy bằng \(a\) và cạnh bên tạo với đáy một góc bằng \({30^0}\). Thể tích của hình chóp S.ABC là ?

Xem đáp án

Tam giác ABC đều, gọi H là giao điểm của các đường cao.

+ Cạnh bên tạo với đáy một góc bằng \({30^0}\)

\( \Rightarrow \tan {30^0} = \dfrac{{SH}}{{AH}}\)

Mà \(AH = \dfrac{2}{3}\sqrt {{a^2} - \dfrac{{{a^2}}}{4}}  = \dfrac{2}{3}.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{a\sqrt 3 }}{3}\)

\( \Rightarrow SH = AH.\tan {30^0} = \dfrac{{a\sqrt 3 }}{3}.\dfrac{{\sqrt 3 }}{3} = \dfrac{a}{3}\)

Vậy \(V = \dfrac{1}{3}.\dfrac{a}{3}.\dfrac{1}{2}.a.a.\sin {60^0} = \dfrac{{\sqrt 3 }}{{36}}{a^3}\)

Chọn đáp án B.

Câu 25: Trắc nghiệm ID: 248151

Xét hình chóp S.ABC với M, N, P lần lượt là các điểm trên SA, SB, SC sao cho \(\dfrac{{SM}}{{MA}} = \dfrac{{SN}}{{NB}} = \dfrac{{SP}}{{PC}} = \dfrac{1}{2}\). Tỉ số thể tích của khối tứ diện SMNP với SABC là:

Xem đáp án

Ta có: \(\dfrac{{SM}}{{MA}} = \dfrac{{SN}}{{NB}} = \dfrac{{SP}}{{PC}} = \dfrac{1}{2} \)

\(\Rightarrow \dfrac{{SM}}{{SA}} = \dfrac{{SN}}{{SB}} = \dfrac{{SP}}{{SC}} = \dfrac{1}{3}\)

Khi đó \(\dfrac{{{V_{S.MNP}}}}{{{V_{S.ABC}}}} = \dfrac{{SM}}{{SA}}.\dfrac{{SN}}{{SB}}.\dfrac{{SP}}{{SC}} = {\left( {\dfrac{1}{3}} \right)^3} = \dfrac{1}{{27}}\)

Chọn đáp án B.

Câu 26: Trắc nghiệm ID: 248152

Cho khối lăng trụ đứng ABC.A’B’C’,đáy ABC là tam giác  vuông tại B,AB=BC=2a,AA’=\(a\sqrt 3 \).Tính thể tích khối lăng trụ ABC.A’B’C’.

Xem đáp án

Thể tích khối lăng trụ \(V = \dfrac{1}{2}2a.2a.\sqrt 3  = 2{a^3}\sqrt 3 \)

Chọn đáp án A.

Câu 27: Trắc nghiệm ID: 248153

Nếu ba kích thước của một khối chữ nhật tăng lên 4 lần thì thể tích của nó tăng lên:

Xem đáp án

Thể tích hình khố chữ nhật ban đầu: \(V = abc\)

Thể tích khối mới : \({V_m} = 4a.4b.4c = 64abc\)

Chọn đáp án C.

Câu 28: Trắc nghiệm ID: 248154

Cho hàm số \(y = {x^3} - 3x + 1\). Tìm khẳng định đúng.

Xem đáp án

\(y = {x^3} - 3x + 1\)

TXĐ: \(D = \mathbb{R}\)

\(\begin{array}{l}y' = 3{x^2} - 3\\y' = 0 \Rightarrow 3{x^2} - 3 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\\x =  - 1\end{array} \right.\end{array}\)

Vậy, hàm số đồng biến trên \(\left( { - \infty , - 1} \right)\) và \(\left( {1, + \infty } \right)\)

Câu 29: Trắc nghiệm ID: 248155

Đường thẳng y = 4x – 1  và đồ thị hàm số \(y = {x^3} - 3{x^2} - 1\) có bao nhiêu điểm chung ?

Xem đáp án

Xét phương trình hoành độ giao điểm:

\(\begin{array}{l}4x - 1 = {x^3} - 3{x^2} - 1\\ \Leftrightarrow {x^3} - 3{x^2} - 4x = 0\\ \Leftrightarrow x\left( {{x^2} - 3x - 4} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  - 1\\x = 4\end{array} \right.\end{array}\)

Số giao điểm của đường thẳng y = 4x -1 và đths \(y = {x^3} - 3{x^2} - 1\) là số nghiệm của \(4x - 1 = {x^3} - 3{x^2} - 1\)

Mặt khác, pt \(4x - 1 = {x^3} - 3{x^2} - 1\) có 3 nghiệm phân biệt nên đường thẳng và đồ thị hàm số có 3 điểm chung

Câu 30: Trắc nghiệm ID: 248156

Hàm số \(y = {{2x + 1} \over {x - 1}}\) có bao nhiêu điểm cực trị ?

Xem đáp án

Ta có:

\(y' = \frac{{ - 3}}{{{{\left( {x - 1} \right)}^2}}} < 0,\forall x \ne 1\) nên hàm số nghịch biến trên các khoảng \(\left( { - \infty ;1} \right),\left( {1; + \infty } \right)\).

Vậy hàm số không có điểm cực trị.

Câu 31: Trắc nghiệm ID: 248157

Cho hàm số \(y = {x^4} - 3{x^2} + 2\). Chọn khảng định đúng trong các khẳng định sau:

Xem đáp án

\(y = {x^4} - 3{x^2} + 2\)

TXĐ: \(D = \mathbb{R}\)

\(\begin{array}{l}y' = 4{x^3} - 6x\\y' = 0 \Rightarrow 4{x^3} - 6x = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 0\\x =  - \dfrac{{\sqrt 6 }}{2}\\x = \dfrac{{\sqrt 6 }}{2}\end{array} \right.\end{array}\)

 

Vậy hàm số có 2 điểm cực tiểu và 1 điểm cực đại

Câu 32: Trắc nghiệm ID: 248158

Tâm đối xứng I của đồ thị hàm số \(y =  - {{2x - 1} \over {x + 1}}\)  là:

Xem đáp án

\(y =  - \dfrac{{2x - 1}}{{x + 1}}\)

TXĐ: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\)

\(\mathop {\lim }\limits_{x \to  \pm \infty } \left( { - \dfrac{{2x - 1}}{{x + 1}}} \right) =  - 2 \)\(\,\Rightarrow TCN: y=-2\)

\(\left. \begin{array}{l}\mathop {\lim }\limits_{x \to {{( - 1)}^ + }} \left( { - \dfrac{{2x - 1}}{{x + 1}}} \right) =  + \infty \\\mathop {\lim }\limits_{x \to {{( - 1)}^{^ - }}} \left( { - \dfrac{{2x - 1}}{{x + 1}}} \right) =  - \infty \end{array} \right\}\)\(\, \Rightarrow TCĐ: x= -1\).

Vậy điểm đối xứng của đồ thị hàm số  \(y =  - \dfrac{{2x - 1}}{{x + 1}}\) là I( -1, -2)

Câu 33: Trắc nghiệm ID: 248159

Thể tích \(V\) của khối lập phương \(ABCD.A'B'C'D'\), biết \(AB = 3a\)  là:

Xem đáp án

Thể tích của khối lập phương là \(V = {\left( {3a} \right)^3} = 27{a^3}\)

Chọn đáp án D.

Câu 34: Trắc nghiệm ID: 248160

Cho hình hộp ABCD.A’B’C’D’ có đáy ABCD là hình thoi cạnh a,\(\widehat {BCD} = {120^0}\) và \(AA' = \dfrac{{7a}}{2}\). Hình chiếu vuông góc của A’ lên mặt phẳng (ABCD) trùng với giao điểm của AC và BD. Tính theo a thể tích khối hộp ABCD.A’B’C’D’.

Xem đáp án

Ta có: \(\widehat {BCD} = \widehat {BAD} = {120^0}\)

\( \Rightarrow \widehat {ABC} = \widehat {ADC} = {60^0}\)

\( \Rightarrow AB = BC = AC = a\)

Áp dụng định lý Py – ta – go ta có:

\(OA' = \sqrt {A{{A'}^2} - O{A^2}}  \)\(\,= \sqrt {\dfrac{{49{a^2}}}{4} - \dfrac{{{a^2}}}{4}}  = 2a\sqrt 3 \)

Khi đó ta có:

\({V_{ABCD.A'B'C'D'}} = A'O.{S_{ABCD}} \)\(\,= 2a\sqrt 3 .a.a.\sin 60 = 3{a^3}\)

Chọn đáp án B.

Câu 35: Trắc nghiệm ID: 248161

Thể tích của khối hộp chữ nhật ABCDA’B’C’D’ có AB = a; BC = b; AA’ = c là:

Xem đáp án

Thể tích khối hộp chữ nhật là \(V = abc\)

Chọn đáp án D.

Câu 36: Trắc nghiệm ID: 248162

Hình nào trong các hình sau không phải là hình đa diện?

Xem đáp án

Hình vuông không phải là hình đa diện.

Chọn đáp án B.

Câu 37: Trắc nghiệm ID: 248163

Đồ thị các hàm số \(y = {{4x + 4} \over {x - 1}}\) và \(y = {x^2} - 1\) cắt nhau tại bao nhiêu điểm ?

Xem đáp án

Xét pt hoành độ giao điểm ta có:

\(\begin{array}{l}
\frac{{4x + 4}}{{x - 1}} = {x^2} - 1\left( {DK:x \ne 1} \right)\\
\Leftrightarrow 4x + 4 = \left( {{x^2} - 1} \right)\left( {x - 1} \right)\\
\Leftrightarrow 4\left( {x + 1} \right) = \left( {x + 1} \right){\left( {x - 1} \right)^2}\\
\Leftrightarrow \left( {x + 1} \right)\left( {{x^2} - 2x + 1 - 4} \right) = 0\\
\Leftrightarrow \left( {x + 1} \right)\left( {{x^2} - 2x - 3} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x + 1 = 0\\
{x^2} - 2x - 3 = 0
\end{array} \right.\\
\Leftrightarrow \left[ \begin{array}{l}
x = - 1\\
x = - 1\\
x = 3
\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}
x = - 1\\
x = 3
\end{array} \right.
\end{array}\)

Số giao điểm của 2 đồ thị hàm số \(y = \dfrac{{4x + 4}}{{x - 1}}\) và \(y = {x^2} - 1{\rm{ }}\) là nghiệm của pt \(\dfrac{{4x + 4}}{{x - 1}} = {x^2} - 1{\rm{ }}\)

\( \Rightarrow \) 2 đồ thị cắt nhau tại 2 điểm

Câu 38: Trắc nghiệm ID: 248164

Cho hàm số \(y = {1 \over 3}{x^3} + 2{x^2} + (m + 1)x + 5\). Tìm tất cả các giá trị của tham số m để hàm số đồng biến trên R.

Xem đáp án

\(y = \dfrac{1}{3}{x^3} + 2{x^2} + \left( {m + 1} \right)x + 5\)

TXĐ:  \(D = \mathbb{R}\)

\(y' = {x^2} + 4x + (m + 1)\)

Hàm số đồng biến trên \(\mathbb{R}\)

\(\begin{array}{l} \Leftrightarrow y' \ge 0;\forall x \in \mathbb{R}\\ \Leftrightarrow \Delta ' \le 0\\ \Leftrightarrow 4 - (m + 1) \le 0\\ \Leftrightarrow m + 1 \ge 4\\ \Leftrightarrow m \ge 3\end{array}\)

Câu 39: Trắc nghiệm ID: 248165

Cho hàm số y = f(x) xác định và có đạo hàm \(f'(x) = 2{x^2}\) trên R. Chọn kết luận đúng:

Xem đáp án

Ta thấy, \(f'\left( x \right) = 2{x^2} \ge 0,\forall x\) và \(f'\left( x \right) = 0 \Leftrightarrow x = 0\) nên hàm số đồng biến trên \(\mathbb{R}\).

Câu 40: Trắc nghiệm ID: 248166

Chọn khẳng định sai:

Xem đáp án

Tâm đối xứng của đồ thị hàm số có thể không nằm trên đồ thị hàm số.

Chẳng hạn đồ thị hàm phân thức bậc nhất trên bậc nhất là giao của hai đường tiệm cận.

Do đó B sai.

Bắt đầu thi để xem toàn bộ câu hỏi trong đề

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »