Cho hàm số y = f(x) xác định và có đạo hàm \(f'(x) = 2{x^2}\) trên R. Chọn kết luận đúng:
A. Hàm số đồng biến trên R
B. Hàm số không xác định tại x = 0
C. Hàm số nghịch biến trên R
D. Hàm số đồng biến trên \((0; + \infty )\) và nghịch biến trên \(( - \infty ;0)\)
Lời giải của giáo viên
ToanVN.com
Ta thấy, \(f'\left( x \right) = 2{x^2} \ge 0,\forall x\) và \(f'\left( x \right) = 0 \Leftrightarrow x = 0\) nên hàm số đồng biến trên \(\mathbb{R}\).
CÂU HỎI CÙNG CHỦ ĐỀ
Khối hộp chữ nhât. ABCD.A’B’C’D’ có AB = a, AC = 2a và AA’ = 2a. Thể tích khối hộp là:
Đồ thị sau đây là của hàm số \(y = {x^4} - 3{x^2} - 3\). Với giá trị nào của m thì phương trình \({x^4} - 3{x^2} + m = 0\) có ba nghiệm phân biệt ?
.png)
Đồ thị các hàm số \(y = {{4x + 4} \over {x - 1}}\) và \(y = {x^2} - 1\) cắt nhau tại bao nhiêu điểm ?
Cho hàm số y = f(x) có bảng biến thiên như sau.
.png)
Hàm số đồng biến trên khoảng nào ?
Đường thẳng y = 4x – 1 và đồ thị hàm số \(y = {x^3} - 3{x^2} - 1\) có bao nhiêu điểm chung ?
Cho hình chóp SA BC có đáy ABC là tam giác vuông cân tại B với AC = a biết SA vuông góc với đáy ABC và SB hợp với đáy một góc 60o. Tính thể tích hình chóp
Nếu ba kích thước của một khối chữ nhật tăng lên 4 lần thì thể tích của nó tăng lên:
Giá trị lớn nhất củ hàm số \(f(x) = {x^3} - 2{x^2} + x - 2\) trên đoạn [0 ; 2] bằng:
Hình chóp đều S.ABC có cạnh đáy bằng \(a\) và cạnh bên tạo với đáy một góc bằng \({30^0}\). Thể tích của hình chóp S.ABC là ?
Hình nào trong các hình sau không phải là hình đa diện?
Cho hàm số y = f(x) xác định trên R\{1} và có bảng biến thiên như sau:
.png)
Mệnh đề nào sau đây đúng ?
Hàm số \(y = {{2x + 1} \over {x - 1}}\) có bao nhiêu điểm cực trị ?
Cho hàm số có bảng biến thiên như sau:
.png)
Mệnh đề nào sau đây là đúng ?
Cho khối lăng trụ đứng ABC.A’B’C’,đáy ABC là tam giác vuông tại B,AB=BC=2a,AA’=\(a\sqrt 3 \).Tính thể tích khối lăng trụ ABC.A’B’C’.
.png)