Câu hỏi Đáp án 3 năm trước 73

Trong không gian với hệ tọa độ \(Oxyz\), cho tứ diện \(ABCD\) với \(A\left( { - 1; - 2;4} \right)\), \(B\left( { - 4; - 2;0} \right)\), \(C\left( {3; - 2;1} \right)\) và \(D\left( {1;1;1} \right)\). Độ dài đường cao của tứ diện \(ABCD\) kẻ từ đỉnh \(D\) bằng:

A.

$3$


Đáp án chính xác ✅

B.

$1$


C.

$2$


D.

\(\dfrac{1}{2}\)


Lời giải của giáo viên

verified ToanVN.com

Đáp án đúng: a

Ta có: \(\overrightarrow {AB}  = \left( { - 3;0; - 4} \right),\overrightarrow {AC}  = \left( {4;0; - 3} \right),\) \(\overrightarrow {AD}  = \left( {2;3; - 3} \right)\) nên \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {0; - 25;0} \right)\)

Diện tích tam giác ${S_{\Delta ABC}} = \dfrac{1}{2}\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right]} \right| = \dfrac{{25}}{2}$

Thể tích tứ diện \({V_{ABCD}} = \dfrac{1}{6}\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} } \right| = \dfrac{{25}}{2}\).

Suy ra độ dài đường cao \(h = d\left( {D,\left( {ABC} \right)} \right) = \dfrac{{3{V_{ABCD}}}}{{{S_{\Delta ABC}}}} = 3\).

Hướng dẫn giải:

- Tính thể tích tứ diện và diện tích tam giác \(ABC\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Trong không gian với hệ tọa độ \(Oxyz\), cho tam giác \(ABC\). Tập hợp các điểm \(M\) thỏa mãn \(\left[ {\left( {\overrightarrow {MA}  + \overrightarrow {MB} } \right),\overrightarrow {AC} } \right] = \overrightarrow 0 \) là:

Xem lời giải » 3 năm trước 103
Câu 2: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, tọa độ điểm A đối xứng với \(B\left( {3; - 1;4} \right)\) qua mặt phẳng \(\left( {xOz} \right)\) là:

Xem lời giải » 3 năm trước 100
Câu 3: Trắc nghiệm

Trong không gian với hệ tọa độ $Oxyz$, cho vectơ \(\vec c =  - 9\vec k\). Tọa độ của vectơ \(\vec c\) là:

Xem lời giải » 3 năm trước 100
Câu 4: Trắc nghiệm

Cho mặt phẳng \(\left( P \right):x - y + z = 1,\left( Q \right):x + z + y - 2 = 0\) và điểm \(M\left( {0;1;1} \right)\). Chọn kết luận đúng:

Xem lời giải » 3 năm trước 100
Câu 5: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \((P):2x-z+1=0\). Tọa độ một vectơ pháp tuyến của (P)

Xem lời giải » 3 năm trước 98
Câu 6: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, hình chiếu vuông góc của \(A\left( 3;2;-1 \right)\) trên mặt phẳng \(\left( Oxy \right)\) là điểm:

Xem lời giải » 3 năm trước 97
Câu 7: Trắc nghiệm

Cho hai véc tơ \(\overrightarrow u  = \left( {a;0;1} \right),\overrightarrow v  = \left( { - 2;0;c} \right)\). Biết \(\overrightarrow u  = \overrightarrow v \), khi đó:

Xem lời giải » 3 năm trước 97
Câu 8: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):2{\rm{x}} - y + z - 1 = 0\) . Điểm nào dưới đây thuộc \(\left( P \right)\)

Xem lời giải » 3 năm trước 96
Câu 9: Trắc nghiệm

Trong không gian với hệ tọa độ $Oxyz$, cho ba điểm

$A\left( {1;2; - 1} \right),{\rm{ }}B\left( {2;1;1} \right),{\rm{ }}C\left( {0;1;2} \right)$. Gọi $H\left( {a;b;c} \right)$ là trực tâm của tam giác \(ABC\). Giá trị của $a + b + c$ bằng:

Xem lời giải » 3 năm trước 90
Câu 10: Trắc nghiệm

Trong không gian với hệ tọa độ $Oxyz$, cho hai điểm  \(A(0;2; - 1)\) , \(B(2;0;1)\). Tìm tọa độ điểm $M$ nằm trên trục $Ox$ sao cho :\(M{A^2} + M{B^2}\) đạt giá trị bé nhất.

Xem lời giải » 3 năm trước 90
Câu 11: Trắc nghiệm

Biết tích có hướng của hai véc tơ \(\overrightarrow u  = \left( {1;m;n} \right)\) và \(\overrightarrow v  = \left( { - \dfrac{1}{2};2;3} \right)\) bằng \(\overrightarrow 0 \). Giá trị của \(T = m + n\) là:

Xem lời giải » 3 năm trước 89

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »