Lời giải của giáo viên
ToanVN.com
Đáp án đúng: a
Giả sử \(D\left( {0;y;0} \right) \in Oy\) ta có:
\(\overrightarrow {AB} = (1;1; - 2),\overrightarrow {AC} = (0;0;2),\overrightarrow {AD} = ( - 2;y + 1; - 1)\)
Ta có \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {2; - 2;0} \right)\)
Theo công thức tính thể tích ta có
\({V_{ABCD}} = \dfrac{1}{6}.\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} } \right| = \dfrac{1}{6}\left| {\left[ {2.( - 2) - 2.(y + 1) + 0.( - 1)} \right]} \right| = \dfrac{1}{6}\left| {6 + 2y} \right|\)
Theo giả thiết ta có \({V_{ABCD}} = 5\), suy ra ta có:
\(\dfrac{1}{6}\left| {6 + 2y} \right| = 5 \Leftrightarrow \left| {6 + 2y} \right| = 30 \Leftrightarrow \left[ \begin{array}{l}2y + 6 = 30\\2y + 6 = - 30\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}y = 12\\y = - 18\end{array} \right.\)
Suy ra \(D(0;12;0)\) hoặc \(D(0; - 18;0)\)
Do đó tổng tung độ của các điểm $D$ là \(12 + ( - 18) = - 6\)
Hướng dẫn giải:
- Sử dụng công thức tính tọa độ vecto:
Cho hai điểm \(A({a_1};{a_2};{a_3})\) và \(B({b_1};{b_2};{b_3})\)ta có: \(\overrightarrow {AB} = ({b_1} - {a_1};{b_2} - {a_2};{b_3} - {a_3})\)
- Sử dụng công thức tính vô hướng
Cho hai vecto \(\overrightarrow {AB} = ({a_1};{a_2};{a_3})\) và \(\overrightarrow {CD} = ({b_1};{b_2};{b_3})\)ta có: \(\overrightarrow {AB} .\overrightarrow {CD} = {a_1}{b_1} + {a_2}{b_2} + {a_3}{b_3}\)
- Sử dụng công thức tính tích có hướng:
Cho hai vecto \(\overrightarrow {AB} = ({a_1};{a_2};{a_3})\) và \(\overrightarrow {CD} = ({b_1};{b_2};{b_3})\)ta có:
\(\left[ {\overrightarrow {AB} ,\overrightarrow {CD} } \right] = \left( {{a_2}{b_3} - {a_3}{b_2};{a_3}{b_1} - {a_1}{b_3};{a_1}{b_2} - {a_2}{b_1}} \right)\)
- Sử dụng công thức tính thể tích tứ diện
\({V_{ABCD}} = \dfrac{1}{6}.\left| {\left[ {\overrightarrow {AB} {\rm{,}}\overrightarrow {AC} } \right]{\rm{.}}\overrightarrow {AD} } \right|\)
Giải thích thêm:
- Tính sai tọa độ các véc tơ.
- Nhầm lẫn các công thức tính tích có hướng và vô hướng.
- Nhớ sai công thức tính thể tích tứ diện.
Giả sử \(D\left( {0;y;0} \right) \in Oy\) ta có:
\(\overrightarrow {AB} = (1;1; - 2),\overrightarrow {AC} = (0;0;2),\overrightarrow {AD} = ( - 2;y + 1; - 1)\)
Ta có \(\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {2; - 2;0} \right)\)
Theo công thức tính thể tích ta có
\({V_{ABCD}} = \dfrac{1}{6}.\left| {\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right].\overrightarrow {AD} } \right| = \dfrac{1}{6}\left| {\left[ {2.( - 2) - 2.(y + 1) + 0.( - 1)} \right]} \right| = \dfrac{1}{6}\left| {6 + 2y} \right|\)
Theo giả thiết ta có \({V_{ABCD}} = 5\), suy ra ta có:
\(\dfrac{1}{6}\left| {6 + 2y} \right| = 5 \Leftrightarrow \left| {6 + 2y} \right| = 30 \Leftrightarrow \left[ \begin{array}{l}2y + 6 = 30\\2y + 6 = - 30\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}y = 12\\y = - 18\end{array} \right.\)
Suy ra \(D(0;12;0)\) hoặc \(D(0; - 18;0)\)
Do đó tổng tung độ của các điểm $D$ là \(12 + ( - 18) = - 6\)
Hướng dẫn giải:
- Sử dụng công thức tính tọa độ vecto:
Cho hai điểm \(A({a_1};{a_2};{a_3})\) và \(B({b_1};{b_2};{b_3})\)ta có: \(\overrightarrow {AB} = ({b_1} - {a_1};{b_2} - {a_2};{b_3} - {a_3})\)
- Sử dụng công thức tính vô hướng
Cho hai vecto \(\overrightarrow {AB} = ({a_1};{a_2};{a_3})\) và \(\overrightarrow {CD} = ({b_1};{b_2};{b_3})\)ta có: \(\overrightarrow {AB} .\overrightarrow {CD} = {a_1}{b_1} + {a_2}{b_2} + {a_3}{b_3}\)
- Sử dụng công thức tính tích có hướng:
Cho hai vecto \(\overrightarrow {AB} = ({a_1};{a_2};{a_3})\) và \(\overrightarrow {CD} = ({b_1};{b_2};{b_3})\)ta có:
\(\left[ {\overrightarrow {AB} ,\overrightarrow {CD} } \right] = \left( {{a_2}{b_3} - {a_3}{b_2};{a_3}{b_1} - {a_1}{b_3};{a_1}{b_2} - {a_2}{b_1}} \right)\)
- Sử dụng công thức tính thể tích tứ diện
\({V_{ABCD}} = \dfrac{1}{6}.\left| {\left[ {\overrightarrow {AB} {\rm{,}}\overrightarrow {AC} } \right]{\rm{.}}\overrightarrow {AD} } \right|\)
Giải thích thêm:
- Tính sai tọa độ các véc tơ.
- Nhầm lẫn các công thức tính tích có hướng và vô hướng.
- Nhớ sai công thức tính thể tích tứ diện.
CÂU HỎI CÙNG CHỦ ĐỀ
Thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường \(y=x{{e}^{x}},\ \ y=0,\ x=0,\ x=1\) xung quanh trục \(Ox\) là:
Trong không gian với hệ tọa độ $Oxyz$, cho ba điểm
$A\left( {1;2; - 1} \right),{\rm{ }}B\left( {2;1;1} \right),{\rm{ }}C\left( {0;1;2} \right)$. Gọi $H\left( {a;b;c} \right)$ là trực tâm của tam giác \(ABC\). Giá trị của $a + b + c$ bằng:
Trong không gian Oxyz, cho các điểm \(A\left( 2;-2;\ 1 \right),\ B\left( 1;-1;\ 3 \right).\) Tọa độ của vecto \(\overrightarrow{AB}\) là
Cho phương trình $4{z^4} + m{z^2} + 4 = 0$ trong tập số phức và \(m\) là tham số thực. Gọi \({z_1},{\rm{ }}{z_2},{\rm{ }}{z_3},{\rm{ }}{z_4}\) là bốn nghiệm của phương trình đã cho. Tìm tất cả các giá trị của \(m\) để \(\left( {z_1^2 + 4} \right)\left( {z_2^2 + 4} \right)\left( {z_3^2 + 4} \right)\left( {z_4^2 + 4} \right) = 324\).
Cho ba điểm $A,B,C$ lần lượt biểu diễn các số phức sau \({z_1} = 1 + i;\,{z_2} = {z_1}^2;\,{z_3} = m - i\). Tìm các giá trị thực của $m$ sao cho tam giác $ABC$ vuông tại $B$.
Gọi \(S\) là tổng phần thực và phần ảo của số phức $w = {z^3} - i$, biết $z$ thỏa mãn $z + 2 - 4i = \left( {2 - i} \right)\overline {iz} $. Mệnh đề nào sau đây đúng?
Trong không gian với hệ tọa độ \(Oxyz,\) cho các điểm \(A\left( -\,1;1;1 \right),\,\,B\left( 1;0;1 \right).\) Mặt phẳng \(\left( P \right)\) đi qua \(A,\,\,B\) và \(\left( P \right)\) cách điểm \(O\) một khoảng lớn nhất. Phương trình của mặt phẳng \(\left( P \right)\) là
Trong không gian với hệ tọa độ vuông góc $Oxyz$, cho hai điểm $E\left( {2,1,1} \right),{\rm{ }}F\left( {0,3, - 1} \right)$. Mặt cầu $\left( S \right)$ đường kính $EF$ có phương trình là:
Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số \(y={{x}^{2}}-4x+4\), trục tung và trục hoành. Xác định k để đường thẳng (d) đi qua điểm \(A\left( 0;4 \right)\) và có hệ số góc k chia (H) thành hai phần có diện tích bằng nhau.
Trong các hàm số dưới đây, hàm số nào có tích phân trên đoạn \([0;\pi ]\) đạt giá trị bằng \(0\) ?
Cho hình lập phương \(A\left( {0;0;0} \right),B\left( {1;0;0} \right),D\left( {0;1;0} \right),A'\left( {0;0;1} \right)\). Gọi \(M,N\) lần lượt là trung điểm của \(AB,CD\). Khoảng cách giữa \(MN\) và \(A'C\) là:
Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $\left( S \right):{x^2} + {y^2} + {z^2} + 2x - 4y + 6z + 5 = 0$. Tiếp diện của $(S)$ tại điểm $M(-1;2;0)$ có phương trình là:
Diện tích hình phẳng được giới hạn bởi đồ thị hàm số \(y = x{e^x}\) , trục hoành, hai đường thẳng \(x = - 2;x = 3\) có công thức tính là
Cho hình phẳng giới hạn bởi $D = \left\{ {y = \tan x;\,\,y = 0;\,\,x = 0;\,\,x = \dfrac{\pi }{3}} \right\}.$ Thể tích vật tròn xoay khi $D$ quay quanh trục $Ox$ là $V = \pi \left( {a - \dfrac{\pi }{b}} \right),$ với $a,\,\,b \in R.$ Tính $T = {a^2} + 2b.$
Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng \(\left( {{Q}_{1}} \right):\,\,3x-y+4z+2=0\) và \(\left( {{Q}_{2}} \right):\,\,3x-y+4z+8=0\). Phương trình mặt phẳng (P) song song và cách đều hai mặt phẳng \(\left( {{Q}_{1}} \right)\) và \(\left( {{Q}_{2}} \right)\) là: