Câu hỏi Đáp án 3 năm trước 85

Gọi ${z_{1,}}$${z_2}$ là các nghiệm phức của phương trình ${z^2} + 4z + 5 = 0$. Đặt $w = {\left( {1 + {z_1}} \right)^{100}} + {\left( {1 + {z_2}} \right)^{100}}$, khi đó

A.

$w = {2^{50}}i$


B.

$w =  - {2^{51}}$


Đáp án chính xác ✅

C.

$w = {2^{51}}$.


D.

$w =  - {2^{50}}i$.


Lời giải của giáo viên

verified ToanVN.com

Đáp án đúng: b

Ta có:

${z^2} + 4z + 5 = 0 \Leftrightarrow {(z + 2)^2} =  - 1 \Leftrightarrow {(z + 2)^2} = {i^2} \Leftrightarrow \left\{ \begin{array}{l}{z_1} =  - 2 + i\\{z_2} =  - 2 - i\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{z_1} + 1 = i - 1\\{z_2} + 1 =  - i - 1\end{array} \right.$

Khi đó ta có:

\(\begin{array}{l}\left\{ \begin{array}{l}{({z_1} + 1)^2} = {(i - 1)^2} =  - 2i\\{({z_2} + 1)^2} = {( - i - 1)^2} = 2i\end{array} \right. \Rightarrow \left\{ \begin{array}{l}{({z_1} + 1)^4} =  - 4\\{({z_2} + 1)^4} =  - 4\end{array} \right.\\ \Rightarrow {({z_1} + 1)^{100}} + {({z_2} + 1)^{100}} = {\left( { - 4} \right)^{25}} + {\left( { - 4} \right)^{25}} = 2.{\left( { - {2^2}} \right)^{25}} =  - {2^{51}}\end{array}\)

Hướng dẫn giải:

Sử dụng phương pháp giải phương trình bậc hai trên tập hợp số phức:

- Bước 1: Tính \(\Delta  = {B^2} - 4AC\).

- Bước 2: Tìm các căn bậc hai của \(\Delta \)

- Bước 3: Tính các nghiệm:

+ Nếu \(\Delta  = 0\) thì phương trình có nghiệm kép \({z_{1,2}} =  - \dfrac{B}{{2A}}\)

+ Nếu \(\Delta  \ne 0\) thì phương trình có hai nghiệm phân biệt \({z_{1,2}} = \dfrac{{ - B \pm \sqrt \Delta  }}{{2A}}\) (ở đó \(\sqrt \Delta  \) là kí hiệu căn bậc hai của số phức \(\Delta \))

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

 Thể tích khối tròn xoay tạo thành khi quay hình phẳng giới hạn bởi các đường \(y=x{{e}^{x}},\ \ y=0,\ x=0,\ x=1\) xung quanh trục \(Ox\) là:  

Xem lời giải » 3 năm trước 134
Câu 2: Trắc nghiệm

Trong không gian với hệ tọa độ $Oxyz$, cho ba điểm

$A\left( {1;2; - 1} \right),{\rm{ }}B\left( {2;1;1} \right),{\rm{ }}C\left( {0;1;2} \right)$. Gọi $H\left( {a;b;c} \right)$ là trực tâm của tam giác \(ABC\). Giá trị của $a + b + c$ bằng:

Xem lời giải » 3 năm trước 128
Câu 3: Trắc nghiệm

Trong không gian Oxyz, cho các điểm \(A\left( 2;-2;\ 1 \right),\ B\left( 1;-1;\ 3 \right).\) Tọa độ của vecto \(\overrightarrow{AB}\) là

Xem lời giải » 3 năm trước 124
Câu 4: Trắc nghiệm

Cho phương trình $4{z^4} + m{z^2} + 4 = 0$ trong tập số phức và \(m\) là tham số thực. Gọi \({z_1},{\rm{ }}{z_2},{\rm{ }}{z_3},{\rm{ }}{z_4}\) là bốn nghiệm của phương trình đã cho. Tìm tất cả các giá trị của \(m\) để \(\left( {z_1^2 + 4} \right)\left( {z_2^2 + 4} \right)\left( {z_3^2 + 4} \right)\left( {z_4^2 + 4} \right) = 324\).

Xem lời giải » 3 năm trước 119
Câu 5: Trắc nghiệm

Trong không gian với hệ tọa độ \(Oxyz,\) cho các điểm \(A\left( -\,1;1;1 \right),\,\,B\left( 1;0;1 \right).\) Mặt phẳng \(\left( P \right)\) đi qua \(A,\,\,B\) và \(\left( P \right)\) cách điểm \(O\) một khoảng lớn nhất. Phương trình của mặt phẳng \(\left( P \right)\) là

Xem lời giải » 3 năm trước 116
Câu 6: Trắc nghiệm

Gọi \(S\) là tổng phần thực và phần ảo của số phức $w = {z^3} - i$, biết $z$ thỏa mãn $z + 2 - 4i = \left( {2 - i} \right)\overline {iz} $. Mệnh đề nào sau đây đúng?

Xem lời giải » 3 năm trước 116
Câu 7: Trắc nghiệm

Cho ba điểm $A,B,C$ lần lượt biểu diễn các số phức sau \({z_1} = 1 + i;\,{z_2} = {z_1}^2;\,{z_3} = m - i\). Tìm các giá trị thực của $m$ sao cho tam giác $ABC$ vuông tại $B$.

Xem lời giải » 3 năm trước 115
Câu 8: Trắc nghiệm

Trong không gian với hệ tọa độ vuông góc $Oxyz$, cho hai điểm $E\left( {2,1,1} \right),{\rm{ }}F\left( {0,3, - 1} \right)$. Mặt cầu $\left( S \right)$ đường kính $EF$ có phương trình là:

Xem lời giải » 3 năm trước 115
Câu 9: Trắc nghiệm

 Gọi (H) là hình phẳng giới hạn bởi đồ thị hàm số \(y={{x}^{2}}-4x+4\), trục tung và trục hoành. Xác định k để đường thẳng (d) đi qua điểm \(A\left( 0;4 \right)\) và có hệ số góc k chia (H) thành hai phần có diện tích bằng nhau.

Xem lời giải » 3 năm trước 110
Câu 10: Trắc nghiệm

Trong các hàm số dưới đây, hàm số nào có tích phân trên đoạn \([0;\pi ]\) đạt giá trị bằng \(0\) ?

Xem lời giải » 3 năm trước 110
Câu 11: Trắc nghiệm

Cho hình lập phương \(A\left( {0;0;0} \right),B\left( {1;0;0} \right),D\left( {0;1;0} \right),A'\left( {0;0;1} \right)\). Gọi \(M,N\) lần lượt là trung điểm của \(AB,CD\). Khoảng cách giữa \(MN\) và \(A'C\) là:

Xem lời giải » 3 năm trước 109
Câu 12: Trắc nghiệm

Trong không gian với hệ tọa độ $Oxyz$, cho mặt cầu $\left( S \right):{x^2} + {y^2} + {z^2} + 2x - 4y + 6z + 5 = 0$. Tiếp diện của $(S)$ tại điểm $M(-1;2;0)$ có phương trình là:

Xem lời giải » 3 năm trước 108
Câu 13: Trắc nghiệm

Diện tích hình phẳng được giới hạn bởi đồ thị hàm số \(y = x{e^x}\) , trục hoành, hai đường thẳng \(x =  - 2;x = 3\) có công thức tính là

Xem lời giải » 3 năm trước 107
Câu 14: Trắc nghiệm

Trong không gian với hệ tọa độ Oxyz, cho hai mặt phẳng \(\left( {{Q}_{1}} \right):\,\,3x-y+4z+2=0\) và \(\left( {{Q}_{2}} \right):\,\,3x-y+4z+8=0\). Phương trình mặt phẳng (P) song song và cách đều hai mặt phẳng \(\left( {{Q}_{1}} \right)\) và \(\left( {{Q}_{2}} \right)\) là:

Xem lời giải » 3 năm trước 106
Câu 15: Trắc nghiệm

Cho số phức \(z\) thỏa mãn\(|z - 1 - 2i| = 4\). Gọi $M,m$ lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của \(|z + 2 + i|\). Tính \(S = {M^2} + {m^2}\).

Xem lời giải » 3 năm trước 106

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »