Câu hỏi Đáp án 3 năm trước 77

Diện tích hình phẳng giới hạn bởi các đồ thị hàm số $y = {x^3} - x;y = 2x$ và các đường thẳng $x =  - 1;x = 1$ được xác định bởi công thức:

A.

$S = \left| {\int_{ - 1}^1 {\left( {3x - {x^3}} \right)dx} } \right|$     


B.

$S = \int_{ - 1}^0 {\left( {3x - {x^3}} \right)dx}  + \int_0^1 {\left( {{x^3} - 3x} \right)dx} $


C.

$S = \int_{ - 1}^1 {\left( {3x - {x^3}} \right)dx} $    


D.

$S = \int_{ - 1}^0 {\left( {{x^3} - 3x} \right)dx}  + \int_0^1 {\left( {3x - {x^3}} \right)dx} $


Đáp án chính xác ✅

Lời giải của giáo viên

verified ToanVN.com

Đáp án đúng: d

Xét phương trình hoành độ giao điểm của 2 đồ thị:

 ${x^3}-x = 2x \Leftrightarrow {x^3}-3x = 0 \Leftrightarrow x = 0$ (chỉ xét trên $\left( {-1;1} \right)$)

Với $x \in \left( {-1;0} \right)$ thì ${x^3}-3x > 0$ ; với $x \in \left( {0;1} \right)$ thì ${x^3}-3x < 0$

Diện tích cần tìm là $S = \int\limits_{ - 1}^1 {\left| {{x^3} - 3x} \right|dx}  = \int\limits_{ - 1}^0 {\left( {{x^3} - 3x} \right)dx}  + \int\limits_0^1 {\left( {3x - {x^3}} \right)dx} $

Hướng dẫn giải:

- Bước 1: Giải phương trình \(f\left( x \right) = g\left( x \right)\) tìm nghiệm.

- Bước 2: Phá dấu giá trị tuyệt đối của biểu thức \(\left| {f\left( x \right) - g\left( x \right)} \right|\)

- Bước 3: Tính diện tích hình phẳng theo công thức tích phân \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số $f\left( x \right) = \dfrac{1}{{{{\sin }^2}x}}$. Nếu $F\left( x \right)$ là một nguyên hàm của hàm số $f\left( x \right)$ và đồ thị hàm số $y = F\left( x \right)$ đi qua $M\left( {\dfrac{\pi }{3};0} \right)$ thì  là:

Xem lời giải » 3 năm trước 101
Câu 2: Trắc nghiệm

Hình phẳng giới hạn bởi đồ thị hàm số \(y=f\left( x \right)\) liên tục trên đoạn \(\left[ 1;\ 3 \right]\) , trục $Ox$ và hai đường thẳng \(x=1,\ \ x=3\) có diện tích là:

Xem lời giải » 3 năm trước 97
Câu 3: Trắc nghiệm

Cho hình phẳng D giới hạn bởi đường cong \(y={{\text{e}}^{x}}\), trục hoành và các đường thẳng \(x=0,x=1\). Khối tròn xoay tạo thành khi quay D quanh trục hoành có thể tích $V$ bằng bao nhiêu?

Xem lời giải » 3 năm trước 96
Câu 4: Trắc nghiệm

Thể tích khối tròn xoay sinh ra bởi phép quay xung quanh $Ox$ của hình giới hạn bởi trục $Ox$ và parabol $\left( P \right):y = {x^2} - ax\,\,\,\,\left( {a > 0} \right)$ bằng $V = 2.$ Khẳng định nào dưới đây đúng ?

Xem lời giải » 3 năm trước 95
Câu 5: Trắc nghiệm

Hàm số \(F\left( x \right)\) được gọi là nguyên hàm của hàm số \(f\left( x \right)\) nếu:

Xem lời giải » 3 năm trước 92
Câu 6: Trắc nghiệm

Tìm họ nguyên hàm của hàm số \(f\left( x \right)={{5}^{2x}}.\)

Xem lời giải » 3 năm trước 90
Câu 7: Trắc nghiệm

Tính \(I = \int {\ln \left( {x + \sqrt {{x^2} + 1} } \right)dx} \) ta được:

Xem lời giải » 3 năm trước 88
Câu 8: Trắc nghiệm

Hàm số \(y = f\left( x \right)\) có nguyên hàm trên $\left( {a;b} \right)$  đồng thời thỏa mãn \(f\left( a \right) = f\left( b \right)\). Lựa chọn phương án đúng:

Xem lời giải » 3 năm trước 87
Câu 9: Trắc nghiệm

Gọi \(S\) là diện tích hình phẳng \(\left( H \right)\) giới hạn bởi các đường $y=f\left( x \right),~$trục hoành và hai đường thẳng \(x =  - 1,x = 2\) (như hình vẽ). Đặt $a=\underset{-1}{\overset{0}{\mathop \int }}\,f\left( x \right)dx,~b=\underset{0}{\overset{2}{\mathop \int }}\,f\left( x \right)dx.$  Mệnh đề nào sau đây đúng?

Đề kiểm tra 1 tiết chương 3: Nguyên hàm - Đề số 1 - ảnh 1

Xem lời giải » 3 năm trước 86
Câu 10: Trắc nghiệm

Tính thể tích hình xuyến do quay hình tròn  có phương trình ${x^2} + {\left( {y - 2} \right)^2} = 1$ khi quanh trục $Ox.$

Xem lời giải » 3 năm trước 85
Câu 11: Trắc nghiệm

Biết hàm số \(F(x)\) là một nguyên hàm của hàm số \(f(x) = \dfrac{{\ln x}}{{x\sqrt {{{\ln }^2}x + 3} }}\) có đồ thị đi qua điểm \(\left( {e;2016} \right)\). Khi đó giá trị \(F\left( 1 \right)\) là

Xem lời giải » 3 năm trước 85
Câu 12: Trắc nghiệm

Hàm số nào sau đây là một nguyên hàm của hàm số \(y=\cos x\) ?

Xem lời giải » 3 năm trước 84
Câu 13: Trắc nghiệm

Cho hàm số \(y=f(x)\) có \(f'(x)\) liên tục trên nửa khoảng \(\left[ 0;+\infty  \right)\) thỏa mãn \(3f(x)+f'(x)=\sqrt{1+3{{e}^{-2x}}}\) biết \(f(0)=\frac{11}{3}\). Giá trị \(f\left( \frac{1}{2}\ln 6 \right)\) bằng

Xem lời giải » 3 năm trước 84
Câu 14: Trắc nghiệm

Tính tích phân \(I = \int\limits_{\ln 2}^{\ln 5} {\dfrac{{{e^{2x}}}}{{\sqrt {{e^x} - 1} }}dx} \) bằng phương pháp đổi biến số \(u = \sqrt {{e^x} - 1} \). Khẳng định nào sau đây là khẳng định đúng?

Xem lời giải » 3 năm trước 82
Câu 15: Trắc nghiệm

Cho hàm số $y = f(x)$ thỏa mãn $f'\left( x \right) = \left( {x + 1} \right){e^x}$ và $\int {f'(x)} dx = (ax + b){e^x} + c$ với $a, b, c$ là các hằng số. Chọn mệnh đề đúng:

Xem lời giải » 3 năm trước 79

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »