Lời giải của giáo viên
ToanVN.com
Đáp án đúng: d
Ta có: \(\Delta = {\left( { - 3i} \right)^2} - 4.2.i = 9{i^2} - 8i = - 9 - 8i\)
Hướng dẫn giải:
Phương trình bậc hai \(A{z^2} + Bz + C = 0\left( {A \ne 0} \right)\) có biệt thức \(\Delta = {B^2} - 4AC\).
Giải thích thêm:
Một số em sẽ tính nhầm \({i^2} = 1\) dẫn đến chọn nhầm đáp án C là sai.
Ta có: \(\Delta = {\left( { - 3i} \right)^2} - 4.2.i = 9{i^2} - 8i = - 9 - 8i\)
Hướng dẫn giải:
Phương trình bậc hai \(A{z^2} + Bz + C = 0\left( {A \ne 0} \right)\) có biệt thức \(\Delta = {B^2} - 4AC\).
Giải thích thêm:
Một số em sẽ tính nhầm \({i^2} = 1\) dẫn đến chọn nhầm đáp án C là sai.
CÂU HỎI CÙNG CHỦ ĐỀ
Thu gọn số phức $w = {i^5} + {i^6} + {i^7} + ... + {i^{18}}$ có dạng \(a + bi\). Tính tổng \(S = a + b.\)
Cho số phức \(z\) thỏa mãn \(5\bar z + 3 - i = \left( { - 2 + 5i} \right)z\). Tính $P = \left| {3i{{\left( {z - 1} \right)}^2}} \right|$.
Tìm môđun của số phức \(z\), biết \(\dfrac{1}{{{z^2}}} = \dfrac{1}{2} + \dfrac{1}{2}i.\)
Kí hiệu \(a,b\) lần lượt là phần thực và phần ảo của số phức \(3 - 2\sqrt 2 i\). Tìm \(a,b.\)
Cho số phức $z = 2 + 3i$. Tìm số phức \(w = \left( {3 + 2i} \right)z + 2\overline z \)
Gọi \({z_1};{z_2}\) là hai nghiệm phức của phương trình \({z^2} + 2z + 5 = 0\). Tính \(\left| {{z_1}} \right| + \left| {{z_2}} \right|\).
Gọi ${z_{1,}}$${z_2}$ là các nghiệm phức của phương trình ${z^2} + 4z + 5 = 0$. Đặt $w = {\left( {1 + {z_1}} \right)^{100}} + {\left( {1 + {z_2}} \right)^{100}}$, khi đó
Cho \({z_1},{z_2}\) là hai nghiệm của phương trình \({z^2} + 2iz + i = 0\). Chọn mệnh đề đúng:
Gọi ${z_1},{z_2}$ là các nghiệm của phương trình: $z + \dfrac{1}{z} = - 1$. Giá trị của $P = {z_1}^3 + {z_2}^3$ là: