Câu hỏi Đáp án 3 năm trước 75

Cho \(\ln x = 2\). Tính giá trị của biểu thức \(T = 2\ln \sqrt {ex}  - \ln \dfrac{{{e^2}}}{{\sqrt x }} + \ln 3.{\log _3}e{x^2}\) ?

A.

\(T = 7\)


Đáp án chính xác ✅

B.

\(T = 12\)


C.

\(T = 13\)


D.

\(T = 21\)


Lời giải của giáo viên

verified ToanVN.com

Đáp án đúng: a

Ta có

$\begin{array}{l}T = 2\ln \sqrt {ex}  - \ln \dfrac{{{e^2}}}{{\sqrt x }} + \ln 3.{\log _3}e{x^2}\\ = 2\ln \left( {{e^{\dfrac{1}{2}}}.{x^{\dfrac{1}{2}}}} \right) - \left( {\ln {e^2} - \ln {x^{\dfrac{1}{2}}}} \right) + \ln 3.\dfrac{{\ln \left( {e.{x^2}} \right)}}{{\ln 3}}\\ = 2\left( {\dfrac{1}{2} + \dfrac{1}{2}\ln x} \right) - \left( {2 - \dfrac{1}{2}\ln x} \right) + \ln e + 2\ln x\\ = 2\left( {\dfrac{1}{2} + \dfrac{1}{2}.2} \right) - \left( {2 - \dfrac{1}{2}.2} \right) + 1 + 2.2 = 7\end{array}$

Hướng dẫn giải:

Để tính giá trị biểu thức chứa logarit cần nhớ các công thức, tính chất liên quan đến logarit

+ Quy tắc tính logarit của một tích, một thương

\(\begin{array}{l}{\log _a}\left( {{b_1}.{b_2}} \right) = {\log _a}{b_1} + {\log _a}{b_2}\\{\log _a}\left( {\dfrac{{{b_1}}}{{{b_2}}}} \right) = {\log _a}{b_1} - {\log _a}{b_2}\end{array}\)

+ Các công thức về logarit: ${\log _a}{b^\alpha } = \alpha {\log _a}b$

+ Chú ý $\ln e$ là ${\log _e}e = 1$

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số \(y = \dfrac{{x + b}}{{cx - 1}}\) có đồ thị như hình bên.  Mệnh đề nào dưới đây đúng?

Đề kiểm tra giữa học kì 1- Đề số 5 - ảnh 1

Xem lời giải » 3 năm trước 185
Câu 2: Trắc nghiệm

Đồ thị hàm số bậc ba có mấy tâm đối xứng?

Xem lời giải » 3 năm trước 99
Câu 3: Trắc nghiệm

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\). Mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAD} \right)\) cùng vuông góc với mặt phẳng \(\left( {ABCD} \right)\). Đường thẳng \(SC\) tạo với đáy góc \({45^0}\). Gọi \(M,N\) lần lượt là trung điểm của \(AB\) và \(AD\). Thể tích của khối chóp \(S.MCDN\) là:

Xem lời giải » 3 năm trước 97
Câu 4: Trắc nghiệm

Hàm số \(y = {\log _a}x\) và \(y = {\log _b}x\) có đồ thị như hình vẽ bên:

Đường thẳng \(y = 3\) cắt hai đồ thị tại các điểm có hoành độ \({x_1},\,\,{x_2}.\) Biết rằng \({x_2} = 2{x_1},\) giá trị của \(\dfrac{a}{b}\) bằng:

Đề kiểm tra giữa học kì 1- Đề số 5 - ảnh 1

Xem lời giải » 3 năm trước 97
Câu 5: Trắc nghiệm

Cho $a > 0;a \ne 1,b > 0$, khi đó nếu ${\log _a}b = N$ thì:

Xem lời giải » 3 năm trước 94
Câu 6: Trắc nghiệm

Với $0 < a < b,m \in {N^*}$ thì:

Xem lời giải » 3 năm trước 91
Câu 7: Trắc nghiệm

Rút gọn biểu thức $B = \dfrac{{{a^{2\sqrt 2 }} - {b^{2\sqrt 3 }}}}{{{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}} + 1$ ta được kết quả là:

Xem lời giải » 3 năm trước 89
Câu 8: Trắc nghiệm

Hai hình tứ diện có các cạnh tương ứng bằng nhau thì chúng:

Xem lời giải » 3 năm trước 87
Câu 9: Trắc nghiệm

Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như hình vẽ. Chọn kết luận đúng:

Đề kiểm tra giữa học kì 1- Đề số 5 - ảnh 1

Xem lời giải » 3 năm trước 86
Câu 10: Trắc nghiệm

Chọn mệnh đề đúng:

Xem lời giải » 3 năm trước 85
Câu 11: Trắc nghiệm

Chọn mệnh đề đúng:

Xem lời giải » 3 năm trước 85
Câu 12: Trắc nghiệm

Đồ thị hàm số $y = {x^3} - \left( {3m + 1} \right){x^2} + \left( {{m^2} + 3m + 2} \right)x + 3$ có điểm cực tiểu và điểm cực đại nằm về hai phía của trục tung khi:

Xem lời giải » 3 năm trước 83
Câu 13: Trắc nghiệm

Cho tứ diện \(ABCD\) có \(G\) là điểm thỏa mãn \(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0 \). Mặt phẳng thay đổi chứa \(BG\) và cắt \(AC,\,\,AD\) lần lượt tại \(M\) và \(N\). Giá trị nhỏ nhất của tỉ số \(\dfrac{{{V_{ABMN}}}}{{{V_{ABCD}}}}\) là

Xem lời giải » 3 năm trước 80
Câu 14: Trắc nghiệm

Đồ thị hàm số $y = {x^3} - 3x + 2$ có $2$ điểm cực trị $A,\;B.$ Diện tích tam giác $OAB\;$ với $O(0;0)$ là gốc tọa độ bằng:

Xem lời giải » 3 năm trước 80
Câu 15: Trắc nghiệm

Cho bốn hình sau đây. Mệnh đề nào sau đây sai:

Đề kiểm tra giữa học kì 1- Đề số 5 - ảnh 1

Xem lời giải » 3 năm trước 79

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »