Cho hình trụ có trục \(\Delta \) và bán kính \(R\). Khi cắt hình trụ bởi mặt phẳng \(\left( \alpha \right)\) song song với \(\Delta \) và cách \(\Delta \) một khoảng \(d\left( {\Delta ;\left( \alpha \right)} \right) = k < R\) thì ta được thiết diện là:
A.
hình chữ nhật
B.
hình tròn
C.
hình elip
D.
đường sinh
Lời giải của giáo viên
ToanVN.com
Đáp án đúng: a

Khi cắt hình trụ bởi mặt phẳng song song với trục mà khoảng cách giữa \(\left( \alpha \right)\) và trục nhỏ hơn bán kính hình trụ thì ta được thiết diện là hình chữ nhật.
Giải thích thêm:
Một số em sẽ chọn nhầm đáp án B vì nhầm với trường hợp mặt phẳng \(\left( \alpha \right)\) vuông góc với trục thì được thiết diện là hình tròn nên sai.

Khi cắt hình trụ bởi mặt phẳng song song với trục mà khoảng cách giữa \(\left( \alpha \right)\) và trục nhỏ hơn bán kính hình trụ thì ta được thiết diện là hình chữ nhật.
Giải thích thêm:
Một số em sẽ chọn nhầm đáp án B vì nhầm với trường hợp mặt phẳng \(\left( \alpha \right)\) vuông góc với trục thì được thiết diện là hình tròn nên sai.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hình nón có diện tích xung quanh bằng \(3\pi {a^2}\) và bán kính đáy bằng \(a\). Tính độ dài đường sinh \(l\) của hình nón đã cho.
Diện tích xung quanh hình nón có bán kính đáy \(r = 3cm\) và độ dài đường sinh \(4cm\) là:
Cho hình nón có các kích thước \(r = 1cm;l = 2cm\) với \(r,l\) lần lượt là bán kính đáy và độ dài đường sinh hình nón. Diện tích toàn phần hình nón là:
Khi quay hình chữ nhật \(ABCD\) quanh các cạnh nào dưới đây ta được hai hình trụ có cùng chiều cao?
Một cái cốc hình trụ cao $15cm$ đựng được $0,5$ lít nước. Hỏi bán kính đường tròn đáy đáy của cốc xấp xỉ bằng bao nhiêu (làm tròn đến hàng thập phân thứ hai)?
Công thức tính diện tích toàn phần hình nón có bán kính đáy \(r\), độ dài đường cao \(h\) và độ dài đường sinh \(l\) là:
Xét hình trụ \(T\) có thiết diện qua trục của hình trụ là hình vuông cạnh $a$. Tính diện tích toàn phần \(S\) của hình trụ.
Công thức tính thể tích khối nón có bán kính đáy \(r\), độ dài đường sinh \(l\) và chiều cao \(h\) là:
Cho hình chữ nhật $ABCD$ có $AB = 3,BC = 4$. Gọi ${V_1},{V_2}$ lần lượt là thể tích của các khối trụ sinh ra khi quay hình chữ nhật quanh trục $AB$ và $BC$. Khi đó tỉ số \(\dfrac{{{V_1}}}{{{V_2}}}\) bằng:
Một đội xây dựng cần hoàn thiện một hệ thống cột tròn của một cửa hàng kinh doanh gồm $17$ chiếc. Trước khi hoàn thiện mỗi chiếc cột là một khối bê tông cốt thép hình lăng trụ lục giác đều có cạnh $14cm$; sau khi hoàn thiện (bằng cách trát thêm vữa tổng hợp vào xung quanh) mỗi cột là một khối trụ có đường kính đáy bằng$30cm$. Biết chiều cao của mỗi cột trước và sau khi hoàn thiện là $390cm$. Tỉnh lượng vữa hỗn hợp cần dùng (tính theo đơn vị ${m^3}$, làm tròn đến $1$ chữ số thập phân sau dấu phầy). Ta có kết quả:
Khi sản xuất vỏ lon sữa bò hình trụ, các nhà thiết kế luôn đặt mục tiêu sao cho chi phí nguyên liệu làm vỏ lon là ít nhất, tức là diện tích toàn phần của hình trụ là nhỏ nhất. Muốn thể tích khối trụ đó bằng $V$ và diện tích toàn phần phần hình trụ nhỏ nhất thì bán kính đáy $R$ bằng: