Câu hỏi Đáp án 3 năm trước 81

Cho hàm số \(f(x)\) liên tục trong đoạn \(\left[ 1;e \right]\), biết \(\int\limits_{1}^{e}{\frac{f(x)}{x}dx}=1,\,\,f(e)=2\). Tích phân \(\int\limits_{1}^{e}{f'(x)\ln xdx}=?\)

A. 1

Đáp án chính xác ✅

B.

C. 2

D. 3

Lời giải của giáo viên

verified ToanVN.com

Đáp án đúng: a

$\int\limits_{1}^{e}{\frac{f(x)}{x}dx}=\int\limits_{1}^{e}{f(x)d\ln x}=\left. f(x)\ln x \right|_{1}^{e}-\int\limits_{1}^{e}{\ln xf'(x)dx}=1$

$\Rightarrow f(e)-\int\limits_{1}^{e}{\ln xf'(x)dx}=1$

$\Leftrightarrow \int\limits_{1}^{e}{\ln xf'(x)dx}=f(e)-1=2-1=1$

Hướng dẫn giải:

Công thức từng phần: \(\int{udv=uv-\int{vdu}}\).

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\)  thỏa mãn \(\int\limits_0^1 {\left( {x + 1} \right)f'\left( x \right)dx}  = 10\)  và \(2f\left( 1 \right) - f\left( 0 \right) = 2\). Tính \(I = \int\limits_0^1 {f\left( x \right)dx} \)

Xem lời giải » 3 năm trước 172
Câu 2: Trắc nghiệm

Giả sử hàm số \(y = f\left( x \right)\) liên tục trên \(\left[ {a;b} \right]\) và \(k\) là một số thực trên \(R\). Cho các công thức:

a) \(\int\limits_a^a {f\left( x \right)dx} = 0\)

b) \(\int\limits_a^b {f\left( x \right)dx}  = \int\limits_b^a {f\left( x \right)dx} \) 

c) \(\int\limits_a^b {kf\left( x \right)dx}  = k\int\limits_a^b {f\left( x \right)dx} \)

Số công thức sai là:

Xem lời giải » 3 năm trước 88
Câu 3: Trắc nghiệm

Cho hai hàm số $y = f\left( x \right),\,\,y = g\left( x \right)$ là các hàm liên tục trên đoạn $\left[ {0;2} \right],$ có $\int\limits_0^1 {f\left( x \right){\rm{d}}x}  = 4,\,\,\int\limits_0^2 {g\left( x \right){\rm{d}}x}  =  - \,2$ và $\int\limits_1^2 {g\left( t \right){\rm{d}}t}  = 1.$ Tính $I = \int\limits_0^1 {\left[ {2f\left( x \right) - g\left( x \right)} \right]{\rm{d}}x} .$

Xem lời giải » 3 năm trước 84
Câu 4: Trắc nghiệm

Tích phân \(I = \int\limits_1^2 {{x^5}} dx\) có giá trị là:

Xem lời giải » 3 năm trước 81
Câu 5: Trắc nghiệm

Biết \(\int\limits_{0}^{1}{\frac{\text{d}x}{\sqrt{x+1}+\sqrt{x}}}=\frac{2}{3}\left( \sqrt{a}-b \right)\) với \(a,\,\,b\) là các số nguyên dương. Tính \(T=a+b.\) 

Xem lời giải » 3 năm trước 80
Câu 6: Trắc nghiệm

Cho hai hàm số \(f,\,\,g\) liên tục trên đoạn $\left[ {a;b} \right]$ và số thực $k$ tùy ý. Trong các khẳng định sau, khẳng định nào sai ?

Xem lời giải » 3 năm trước 78
Câu 7: Trắc nghiệm

Kết quả của tích phân \(\int\limits_{ - 1}^0 {\left( {x + 1 + \dfrac{2}{{x - 1}}} \right)dx} \) được viết dưới dạng \(a + b\ln 2\) với \(a,b \in Q\). Khi đó \(a + b\) có giá trị là:

Xem lời giải » 3 năm trước 78
Câu 8: Trắc nghiệm

Cho hàm số \(y = f(x)\)thỏa mãn hệ thức \(\int {f\left( x \right)\sin xdx}  =  - f(x).\cos x + \int {{\pi ^x}\cos xdx}. \) Hỏi \(y = f\left( x \right)\) là hàm số nào trong các hàm số sau: 

Xem lời giải » 3 năm trước 70
Câu 9: Trắc nghiệm

Cho hàm số \(f\left( x \right)=\frac{a}{{{\left( x+1 \right)}^{3}}}+bx{{e}^{x}}\). Tìm a và b biết rằng \(f'\left( 0 \right)=-22\) và \(\int\limits_{0}^{1}{f\left( x \right)dx}=5\).

Xem lời giải » 3 năm trước 70
Câu 10: Trắc nghiệm

Biết $\int {f\left( x \right){\mkern 1mu} {\rm{d}}x = 2x\ln \left( {3x - 1} \right) + C} $ với $x \in \left( {\dfrac{1}{9}; + \infty } \right)$. Tìm khẳng định đúng trong các khẳng định sau.

Xem lời giải » 3 năm trước 67
Câu 11: Trắc nghiệm

Họ nguyên hàm của hàm số $f\left( x \right) = {x^2}\sqrt {4 + {x^3}} $ là:

Xem lời giải » 3 năm trước 66

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »