Lời giải của giáo viên
ToanVN.com
Đáp án đúng: d
Ta có:
\(\begin{array}{l}{\log _{15}}20 = {\log _{15}}\left( {{2^2}.5} \right)\\ = 2{\log _{15}}2 + {\log _{15}}5\\ = \dfrac{2}{{{{\log }_2}15}} + \dfrac{1}{{{{\log }_5}15}}\\ = \dfrac{2}{{{{\log }_2}3 + {{\log }_2}5}} + \dfrac{1}{{{{\log }_5}3 + {{\log }_5}5}}\\ = \dfrac{2}{{\dfrac{1}{{{{\log }_3}2}} + \dfrac{{{{\log }_3}5}}{{{{\log }_3}2}}}} + \dfrac{1}{{{{\log }_5}3 + 1}}\\ = \dfrac{{2{{\log }_3}2}}{{1 + {{\log }_3}5}} + \dfrac{1}{{\dfrac{1}{{{{\log }_3}5}} + 1}}\\ = \dfrac{{2{{\log }_3}2}}{{1 + {{\log }_3}5}} + \dfrac{{{{\log }_3}5}}{{{{\log }_3}5 + 1}}\\ = \dfrac{{2{{\log }_3}2 + {{\log }_3}5}}{{{{\log }_3}5 + 1}}\\ = \dfrac{{{{\log }_3}5 + 1 + 2{{\log }_3}2 - 1}}{{{{\log }_3}5 + 1}}\\ = 1 + \dfrac{{2{{\log }_3}2 - 1}}{{{{\log }_3}5 + 1}}\end{array}\)
\( \Rightarrow a = 1,\,\,b = - 1,\,\,c = 1\).
Vậy \(T = a + b + c = 1 + \left( { - 1} \right) + 1 = 1.\)
Hướng dẫn giải:
Sử dụng các công thức: \({\log _a}\left( {xy} \right) = {\log _a}x + {\log _a}y\,\,\left( {0 < a \ne 1,\,\,x,\,\,y > 0} \right)\), \({\log _a}b = \dfrac{1}{{{{\log }_b}a}}\,\,\left( {0 < a,\,\,b \ne 1} \right)\), \({\log _a}b = \dfrac{{{{\log }_c}b}}{{{{\log }_c}a}}\,\,\left( {0 < a,c \ne 1,\,\,b > 0} \right)\).
Ta có:
\(\begin{array}{l}{\log _{15}}20 = {\log _{15}}\left( {{2^2}.5} \right)\\ = 2{\log _{15}}2 + {\log _{15}}5\\ = \dfrac{2}{{{{\log }_2}15}} + \dfrac{1}{{{{\log }_5}15}}\\ = \dfrac{2}{{{{\log }_2}3 + {{\log }_2}5}} + \dfrac{1}{{{{\log }_5}3 + {{\log }_5}5}}\\ = \dfrac{2}{{\dfrac{1}{{{{\log }_3}2}} + \dfrac{{{{\log }_3}5}}{{{{\log }_3}2}}}} + \dfrac{1}{{{{\log }_5}3 + 1}}\\ = \dfrac{{2{{\log }_3}2}}{{1 + {{\log }_3}5}} + \dfrac{1}{{\dfrac{1}{{{{\log }_3}5}} + 1}}\\ = \dfrac{{2{{\log }_3}2}}{{1 + {{\log }_3}5}} + \dfrac{{{{\log }_3}5}}{{{{\log }_3}5 + 1}}\\ = \dfrac{{2{{\log }_3}2 + {{\log }_3}5}}{{{{\log }_3}5 + 1}}\\ = \dfrac{{{{\log }_3}5 + 1 + 2{{\log }_3}2 - 1}}{{{{\log }_3}5 + 1}}\\ = 1 + \dfrac{{2{{\log }_3}2 - 1}}{{{{\log }_3}5 + 1}}\end{array}\)
\( \Rightarrow a = 1,\,\,b = - 1,\,\,c = 1\).
Vậy \(T = a + b + c = 1 + \left( { - 1} \right) + 1 = 1.\)
Hướng dẫn giải:
Sử dụng các công thức: \({\log _a}\left( {xy} \right) = {\log _a}x + {\log _a}y\,\,\left( {0 < a \ne 1,\,\,x,\,\,y > 0} \right)\), \({\log _a}b = \dfrac{1}{{{{\log }_b}a}}\,\,\left( {0 < a,\,\,b \ne 1} \right)\), \({\log _a}b = \dfrac{{{{\log }_c}b}}{{{{\log }_c}a}}\,\,\left( {0 < a,c \ne 1,\,\,b > 0} \right)\).
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = \dfrac{{x + b}}{{cx - 1}}\) có đồ thị như hình bên. Mệnh đề nào dưới đây đúng?

Hàm số \(y = {\log _a}x\) và \(y = {\log _b}x\) có đồ thị như hình vẽ bên:
Đường thẳng \(y = 3\) cắt hai đồ thị tại các điểm có hoành độ \({x_1},\,\,{x_2}.\) Biết rằng \({x_2} = 2{x_1},\) giá trị của \(\dfrac{a}{b}\) bằng:
Cho $a > 0;a \ne 1,b > 0$, khi đó nếu ${\log _a}b = N$ thì:
Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\). Mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAD} \right)\) cùng vuông góc với mặt phẳng \(\left( {ABCD} \right)\). Đường thẳng \(SC\) tạo với đáy góc \({45^0}\). Gọi \(M,N\) lần lượt là trung điểm của \(AB\) và \(AD\). Thể tích của khối chóp \(S.MCDN\) là:
Rút gọn biểu thức $B = \dfrac{{{a^{2\sqrt 2 }} - {b^{2\sqrt 3 }}}}{{{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}} + 1$ ta được kết quả là:
Đồ thị hàm số $y = {x^3} - \left( {3m + 1} \right){x^2} + \left( {{m^2} + 3m + 2} \right)x + 3$ có điểm cực tiểu và điểm cực đại nằm về hai phía của trục tung khi:
Hai hình tứ diện có các cạnh tương ứng bằng nhau thì chúng:
Đồ thị hàm số $y = {x^3} - 3x + 2$ có $2$ điểm cực trị $A,\;B.$ Diện tích tam giác $OAB\;$ với $O(0;0)$ là gốc tọa độ bằng:
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như hình vẽ. Chọn kết luận đúng:

Cho tứ diện \(ABCD\) có \(G\) là điểm thỏa mãn \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \). Mặt phẳng thay đổi chứa \(BG\) và cắt \(AC,\,\,AD\) lần lượt tại \(M\) và \(N\). Giá trị nhỏ nhất của tỉ số \(\dfrac{{{V_{ABMN}}}}{{{V_{ABCD}}}}\) là