Tìm điểm $M$ biểu diễn số phức \(z = i - 2\)
lượt xem
Tập hợp các điểm biểu diễn hình học của số phức $z$ là đường thẳng $\Delta $ như hình vẽ. Tìm giá trị nhỏ nhất của \(\left| z \right|\).
lượt xem
Nghiệm của phương trình: ${z^2} + (1 - i)z - 18 + 13i = 0$ là:
lượt xem
Cho hai số phức ${z_1} = 1 + i$ và ${z_2} = 2 - 3i$. Tính môđun của số phức ${z_1} - {z_2}.$
lượt xem
Tìm phần ảo \(b\) của số phức $w = \dfrac{1}{{2i}}\left( {z - \bar z} \right)$ với $z = 5 - 3i$.
lượt xem
Chọn mệnh đề đúng:
lượt xem
Phương trình: ${z^2} + az + b = 0$ \(\left( {a,b \in \mathbb{R}} \right)\) có một nghiệm phức là $z = 1 + 2i$ . Tổng $2$ số $a$ và $b$ bằng
lượt xem
Căn bậc hai của số \(a = - 3\) là:
lượt xem
Xét số phức \(z\) thỏa mãn \(\left| {z + 2 - i} \right| + \left| {z - 4 - 7i} \right| = 6\sqrt 2 \). Gọi \(m,M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của \(\left| {z - 1 + i} \right|\). Tính \(P = m + M\).
lượt xem
Trong các số phức z thỏa mãn \(\left| {z + 3 + 4i} \right| = 2\) , gọi \({z_0}\) là số phức có mô đun nhỏ nhất. Khi đó:
lượt xem
Tìm giá trị nhỏ nhất của \(|z|\), biết rằng \(z\) thỏa mãn điều kiện \(|\dfrac{{4 + 2i}}{{1 - i}}z - 1| = 1\).
lượt xem
Tìm tập hợp các điểm trên mặt phẳng tọa độ biểu diễn các số phức $z$ thỏa mãn điều kiện \(2|z - 1 - 2i| = |3i + 1 - 2\bar z|\).
lượt xem
Tập điểm biểu diễn số phức $z$ thỏa mãn ${\left| z \right|^2} = {z^2}$ là:
lượt xem
Gọi ${z_1}$, ${z_2}$ là hai nghiệm phức của phương trình ${z^2} - 2z + 2 = 0$. Tính giá trị biểu thức $P = z_1^{2016} + z_2^{2016}.$
lượt xem
Cho số phức \({\rm{w}}\)và hai số thực \(a,b\). Biết \({z_1} = {\rm{w}} + 2i\) và \({z_2} = 2w - 3\) là 2 nghiệm phức của phương trình \({z^2} + az + b = 0\). Tính \(T = \left| {{z_1}} \right| + \left| {{z_2}} \right|\).
lượt xem
Kí hiệu \({z_1},{\rm{ }}{z_2},\,{\rm{ }}{z_3}\) và \({z_4}\) là bốn nghiệm phức của phương trình $6{z^4} + 19{z^2} + 15 = 0.$ Tính tổng \(T = \dfrac{1}{{{z_1}}} + \dfrac{1}{{{z_2}}} + \dfrac{1}{{{z_3}}} + \dfrac{1}{{{z_4}}}.\)
lượt xem
Tính môđun của số phức $z$ biết $\overline z = \left( {4 - 3i} \right)\left( {1 + i} \right)$.
lượt xem
Thu gọn số phức $w = {i^5} + {i^6} + {i^7} + ... + {i^{18}}$ có dạng \(a + bi\). Tính tổng \(S = a + b.\)
lượt xem
Tìm số phức có phần thực bằng $12$ và mô đun bằng $13$:
lượt xem
lượt xem
lượt xem
Cho số phức $z = 1 + \sqrt {3}i $. Khi đó
lượt xem
Cho số phức $z = 3 + 2i.$ Tìm phần thực và phần ảo của số phức $\bar z.$
lượt xem
Số phức $z$ thỏa mãn $\left| z \right| + z = 0$. Khi đó:
lượt xem
Cho \({z_1},{z_2}\) là hai nghiệm của phương trình \({z^2} + 2iz + i = 0\). Chọn mệnh đề đúng:
lượt xem
Tìm các giá trị của tham số thực \(x,\,{\rm{ }}y\) để số phức \(z = {\left( {x + iy} \right)^2} - 2\left( {x + iy} \right) + 5\) là số thực.
lượt xem
Gọi \(M\) là điểm biểu diễn của số phức \(z\), biết tập hợp các điểm \(M\) là phần tô đậm ở hình bên (kể cả biên). Mệnh đề nào sau đây đúng ?
lượt xem
Cho số phức $z$ thỏa mãn $\dfrac{{1 - i}}{{z + 1}} = 1 + i$. Điểm \(M\) biểu diễn của số phức $w = {z^3} + 1$ trên mặt phẳng tọa độ có tọa độ là:
lượt xem
Cho phương trình \(2{z^2} - 3iz + i = 0\). Chọn mệnh đề đúng:
lượt xem
Kí hiệu \(a\), \(b\) lần lượt là phần thực và phần ảo của số phức \(z = i\left( {1 - i} \right).\) Khẳng định nào sau đây là đúng?
lượt xem
Gọi \({z_1}\) và \({z_2}\) là hai nghiệm phức của phương trình \({z^2} + 2z + 10 = 0\). Tính giá trị biểu thức \(P = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}.\)
lượt xem
Cho số phức $z = 2 + 5i$. Tìm số phức \(w = iz + \overline z \).
lượt xem
Giả sử ${z_1};{z_2}$ là hai nghiệm phức của phương trình: ${z^2} - 2z + 5 = 0$ và $A,B$ là các điểm biểu diễn của ${z_1};{z_2}$. Tọa độ trung điểm của đoạn thẳng $AB$ là
lượt xem
Xét số phức \(z\) thỏa mãn \(\left| {z + 2 - i} \right| + \left| {z - 4 - 7i} \right| = 6\sqrt 2 \). Gọi \(m,M\) lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của \(\left| {z - 1 + i} \right|\). Tính \(P = m + M\).
lượt xem
Trong số các số phức $z$ thỏa mãn điều kiện \(\left| {z - 4 + 3i} \right| = 3\), gọi ${z_0}$ là số phức có mô đun lớn nhất. Khi đó \(\left| {{z_0}} \right|\) là
lượt xem
Tìm giá trị lớn nhất của \(|z|\), biết rằng \(z\) thỏa mãn điều kiện \(|\dfrac{{ - 2 - 3i}}{{3 - 2i}}z + 1| = 1\).
lượt xem
Hỏi có bao nhiêu số phức thỏa mãn đồng thời các điều kiện $\left| {z - i} \right| = 5$ và \({z^2}\) là số thuần ảo?
lượt xem
Cho ba điểm $A,B,C$ lần lượt biểu diễn các số phức sau \({z_1} = 1 + i;\,{z_2} = {z_1}^2;\,{z_3} = m - i\). Tìm các giá trị thực của $m$ sao cho tam giác $ABC$ vuông tại $B$.
lượt xem
Gọi \({z_1};{z_2};{z_3};{z_4}\) là bốn nghiệm phức của phương trình \(2{z^4} - 3{z^2} - 2 = 0\). Tổng \(T = |{z_1}{|^2} + |{z_2}{|^2} + |{z_3}{|^2} + |{z_4}{|^2}\) bằng:
lượt xem
Kí hiệu \({z_1},{z_2}\) là hai nghiệm của phương trình \({z^2} + z + 1 = 0\). Tính \(P = z_1^2 + z_2^2 + {z_1}{z_2}.\)
lượt xem
Kí hiệu ${z_1},{z_2},{z_3},{z_4}$ là bốn nghiệm phức của phương trình ${z^4} - {z^2} - 12 = 0$. Tính tổng $T = \left| {{z_1}} \right| + \left| {{z_2}} \right| + \left| {{z_3}} \right| + \left| {{z_4}} \right|$.
lượt xem
Cho số phức \(z = a + bi(ab \ne 0)\). Tìm phần thực của số phức \({\rm{w}} = \dfrac{1}{{{z^2}}}\).
lượt xem
Tính môđun của số phức $z$ biết $\overline z = \left( {4 - 3i} \right)\left( {1 + i} \right)$.
lượt xem
Cho số phức $z = 1 + i + {i^2} + {i^3} + ... + {i^9}$. Khi đó:
lượt xem
Phương trình bậc hai trên tập số phức có thể có mấy nghiệm?
lượt xem
Kí hiệu \(a,b\) lần lượt là phần thực và phần ảo của số phức \(3 - 2\sqrt 2 i\). Tìm \(a,b.\)
lượt xem
Số phức \(w\) là căn bậc hai của số phức \(z\) nếu:
lượt xem
Biết rằng phương trình ${z^2} + bz + c = 0\left( {b;c \in R} \right)$ có một nghiệm phức là ${z_1} = 1 + 2i$ . Khi đó:
lượt xem
Cho số phức $z = 2 + 3i$. Tìm số phức \(w = \left( {3 + 2i} \right)z + 2\overline z \)
lượt xem
Hai số phức \(z = a + bi,z' = a + b'i\) bằng nhau nếu:
lượt xem