Đề thi HK2 môn Toán 11 năm 2021 - Trường THPT Nguyễn An Ninh

Đề thi HK2 môn Toán 11 năm 2021 - Trường THPT Nguyễn An Ninh

  • Hocon247

  • 40 câu hỏi

  • 60 phút

  • 28 lượt thi

  • Trung bình

Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com

Câu 1: Trắc nghiệm ID: 263762

Cho hàm số \(y = {x^3} + 3{x^2} - 1\) có đồ thị \(\left( C \right)\). Viết phương trình tiếp tuyến của \(\left( C \right)\) tại điểm M có hoành độ bằng \( - 1\)

Xem đáp án

Ta có: \(y' = 3{x^2} + 6x\).

Với \({x_0} =  - 1\) thì \({y_0} = {\left( { - 1} \right)^3} + 3.{\left( { - 1} \right)^2} - 1 = 1\)

Hệ số góc \(k = y'\left( { - 1} \right)\) \( = 3.{\left( { - 1} \right)^2} + 6.\left( { - 1} \right) =  - 3\)

Phương trình tiếp tuyến: \(y =  - 3\left( {x + 1} \right) + 1\) hay \(y =  - 3x - 2\).

Câu 2: Trắc nghiệm ID: 263763

Trong các dãy số sau đây, dãy số nào là cấp số cộng?

Xem đáp án

Quan sát các đáp án ta thấy, chỉ có đáp án D có \({u_{n + 1}} - {u_n} = 2 \Leftrightarrow {u_{n + 1}} = {u_n} + 2\) nên là CSC.

Câu 3: Trắc nghiệm ID: 263764

Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\) có \(AB = a\), cạnh bên \(AA' = \frac{{3a}}{2}\) (tham khảo hình vẽ bên). Tính khoảng cách từ điểm \(C'\) đến mặt phẳng \(\left( {CA'B'} \right)\).

Xem đáp án

Tam giác \(CA'B'\) cân tại \(C\) vì \(CA' = CB'\) (hai đường chéo của hai hình chữ nhật bằng nhau)

Gọi M là trung điểm của \(A'B'\).

Ta có: \(A'B' \bot CM\) và \(A'B' \bot C'M\) nên \(A'B' \bot \left( {CMC'} \right)\).

Trong \(\left( {CMC'} \right)\), kẻ \(C'H \bot CM\) ta có:

\(\left\{ \begin{array}{l}C'H \bot A'B'\\C'H \bot CM\end{array} \right.\) \( \Rightarrow C'H \bot \left( {CA'B'} \right)\)

\( \Rightarrow d\left( {C',\left( {CA'B'} \right)} \right) = C'H\).

Tam giác \(A'B'C'\) đều cạnh \(a\) nên \(C'M = \frac{{a\sqrt 3 }}{2}\).

Tam giác \(CMC'\) vuông tại \(C'\) nên:

\(\frac{1}{{C'{H^2}}} = \frac{1}{{C'{C^2}}} + \frac{1}{{C'{M^2}}}\)\( = \frac{1}{{{{\left( {\frac{{3a}}{2}} \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}}} = \frac{{16}}{{9{a^2}}}\)

\( \Rightarrow C'{H^2} = \frac{{9{a^2}}}{{16}} \Rightarrow C'H = \frac{{3a}}{4}\)

Vậy \(d\left( {C',\left( {CA'B'} \right)} \right) = \frac{{3a}}{4}\)

Câu 4: Trắc nghiệm ID: 263765

Đạo hàm của hàm số \(y = \cot x\) là hàm số:

Xem đáp án

\(\left( {\cot x} \right)' =  - \frac{1}{{{{\sin }^2}x}}\)

Câu 5: Trắc nghiệm ID: 263766

Kết quả của giới hạn \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{ - 2x + 1}}{{x - 1}}\) là:

Xem đáp án

Ta có:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {1^ + }} \left( { - 2x + 1} \right) =  - 2.1 + 1 =  - 1 < 0\\\mathop {\lim }\limits_{x \to {1^ + }} \left( {x - 1} \right) = 1 - 1 = 0\\x > 1 \Rightarrow x - 1 > 0\end{array}\)

Vậy \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{ - 2x + 1}}{{x - 1}} =  - \infty \).

Câu 6: Trắc nghiệm ID: 263767

Hàm số  \(y = f(x) = \frac{{{x^3} + x\cos x + \sin x}}{{2\sin x + 3}}\) liên tục trên:

Xem đáp án

Ta có:  \( - 1 \le \sin x \le 1\)\( \Leftrightarrow  - 2 \le 2\sin x \le 2\) \( \Leftrightarrow 1 \le 2\sin x + 3 \le 5\).

Do đó \(2\sin x + 3 > 0\,\,\forall x \in \mathbb{R}\).

\( \Rightarrow \) Hàm số xác định trên \(\mathbb{R}\).

Vậy hàm phân thức trên liên tục trên \(\mathbb{R}\).

Câu 7: Trắc nghiệm ID: 263768

Các mặt bên của một khối chóp ngũ giác đều là hình gì?

Xem đáp án

Các mặt bên của một khối chóp ngũ giác đều là tam giác cân.

Câu 8: Trắc nghiệm ID: 263769

Kết quả của giới hạn \(\lim \frac{{ - 3{n^2} + 5n + 1}}{{2{n^2} - n + 3}}\) là:

Xem đáp án

\(\begin{array}{l}\,\,\,\,\lim \frac{{ - 3{n^2} + 5n + 1}}{{2{n^2} - n + 3}}\\ = \lim \frac{{ - 3 + \frac{5}{n} + \frac{1}{{{n^2}}}}}{{2 - \frac{1}{n} + \frac{3}{{{n^2}}}}}\\ =  - \frac{3}{2}\end{array}\)

Câu 9: Trắc nghiệm ID: 263770

Tìm giá trị thực của tham số m để hàm số \(y = f\left( x \right) = \left\{ {\begin{array}{*{20}{c}}{\frac{{{x^2} - x - 2}}{{x - 2}}\,\,khi\,x \ne 2}\\{m\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,x = 2}\end{array}} \right.\) liên tục tại \(x = 2\).

Xem đáp án

Ta có:

\(\begin{array}{l}\,\,\,\,\mathop {\lim }\limits_{x \to 2} f\left( x \right) = \mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - x - 2}}{{x - 2}}\\ = \mathop {\lim }\limits_{x \to 2} \frac{{\left( {x - 2} \right)\left( {x + 1} \right)}}{{x - 2}}\\ = \mathop {\lim }\limits_{x \to 2} \left( {x + 1} \right) = 3\end{array}\)

Lại có \(f\left( 2 \right) = m\).

Do đó để hàm số liên tục tại \(x = 2\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = f\left( 2 \right)\)\( \Leftrightarrow m = 3\).

Câu 10: Trắc nghiệm ID: 263771

Đạo hàm của hàm số \(y = {\left( {{x^3} - 2{x^2}} \right)^{2019}}\) là:

Xem đáp án

Ta có:

\(\begin{array}{l}y = {\left( {{x^3} - 2{x^2}} \right)^{2019}}\\ \Rightarrow y' = 2019.{\left( {{x^3} - 2{x^2}} \right)^{2018}}.\left( {{x^3} - 2{x^2}} \right)'\\y' = 2019.{\left( {{x^3} - 2{x^2}} \right)^{2018}}.\left( {3{x^2} - 4x} \right)\end{array}\)

Lại có \(f\left( 2 \right) = m\).

Do đó để hàm số liên tục tại \(x = 2\) khi và chỉ khi \(\mathop {\lim }\limits_{x \to 2} f\left( x \right) = f\left( 2 \right)\)\( \Leftrightarrow m = 3\).

Câu 11: Trắc nghiệm ID: 263772

Cho hình chóp S.ABC có SA^(ABC). Gọi H, K lần lượt là trực tâm các tam giác SBC và ABC. Mệnh đề nào sai trong các mệnh đề sau?

Xem đáp án

Gọi \(M\) là giao điểm của \(AK\) và \(BC\), ta có \(AM \bot BC\).

\(\left\{ \begin{array}{l}BC \bot AM\\BC \bot SA\,\,\,\left( {SA \bot \left( {ABC} \right)} \right)\end{array} \right.\)\( \Rightarrow BC \bot \left( {SAM} \right)\)

\( \Rightarrow BC \bot SM \Rightarrow SM\) là đường cao của \(\Delta SBC\), do đó \(K \in SM\).

Suy ra SH, AK và BC đồng quy tại M nên đáp án D đúng.

Mà \(BC \bot \left( {SAM} \right)\,\,\left( {cmt} \right),\)\(\left( {SAM} \right) \equiv \left( {SAH} \right)\)  nên \(BC \bot \left( {SAH} \right)\), suy ra đáp án A đúng.

Trong \(\left( {ABC} \right)\) kéo dài BK cắt AC tại P, trong (SBC) kéo dài BH cắt SC tại N.

Ta có: \(\left\{ \begin{array}{l}BP \bot AC\\BP \bot SA\,\,\left( {SA \bot \left( {ABC} \right)} \right)\end{array} \right.\)\( \Rightarrow BP \bot \left( {SAC} \right)\)  \( \Rightarrow BP \bot SC\).

Suy ra \(\left\{ \begin{array}{l}SC \bot BP\\SC \bot BN\end{array} \right.\)\( \Rightarrow SC \bot \left( {BPN} \right)\), mà \(HK \subset \left( {BPN} \right) \Rightarrow HK \bot SC\).

Mặt khác \(HK \subset \left( {SAM} \right) \Rightarrow HK \bot BC\).

Nên \(HK \bot \left( {SBC} \right)\), do đó đáp án B đúng.

Câu 12: Trắc nghiệm ID: 263773

Giá trị của giới hạn \(\lim \frac{{\sqrt {9{n^2} - n}  - \sqrt {n + 2} }}{{3n - 2}}\) là:

Xem đáp án

Ta có:

\(\begin{array}{l}\,\,\,\,\,\lim \frac{{\sqrt {9{n^2} - n}  - \sqrt {n + 2} }}{{3n - 2}}\\ = \lim \frac{{\sqrt {9 - \frac{1}{n}}  - \sqrt {\frac{1}{n} + \frac{2}{{{n^2}}}} }}{{3 - \frac{2}{n}}}\\ = \frac{{\sqrt 9  - \sqrt 0 }}{3} = \frac{3}{3} = 1.\end{array}\)

Câu 13: Trắc nghiệm ID: 263774

Gọi (d) là tiếp tuyến của đồ thị hàm số \(y = f(x) =  - {x^3} + x\) tại điểm \(M( - 2;6).\) Hệ số góc của (d) là

Xem đáp án

Ta có: \(y = f\left( x \right) =  - {x^3} + x\) \( \Rightarrow f'\left( x \right) =  - 3{x^2} + 1\).

Vậy hệ số góc của (d) là tiếp tuyến của đồ thị hàm số \(y = f(x) =  - {x^3} + x\) tại điểm \(M( - 2;6)\) là \(k = f'\left( { - 2} \right) =  - 3.{\left( { - 2} \right)^2} + 1 =  - 11.\)

Câu 14: Trắc nghiệm ID: 263775

Biết rằng \(\lim \left( {\frac{{{{\left( {\sqrt 5 } \right)}^n} - {2^{n + 1}} + 1}}{{{{5.2}^n} + {{\left( {\sqrt 5 } \right)}^{n + 1}} - 3}} + \frac{{2{n^2} + 3}}{{{n^2} - 1}}} \right)\) \( = \frac{{a\sqrt 5 }}{b} + c\) với \(a,b,c \in \mathbb{Z}\). Tính giá trị của biểu thức  \(S = {a^2} + {b^2} + {c^2}\).

Xem đáp án

Ta có:

\(\begin{array}{l}\,\,\,\,\lim \left( {\frac{{{{\left( {\sqrt 5 } \right)}^n} - {2^{n + 1}} + 1}}{{{{5.2}^n} + {{\left( {\sqrt 5 } \right)}^{n + 1}} - 3}} + \frac{{2{n^2} + 3}}{{{n^2} - 1}}} \right)\\ = \lim \frac{{{{\left( {\sqrt 5 } \right)}^n} - {2^{n + 1}} + 1}}{{{{5.2}^n} + {{\left( {\sqrt 5 } \right)}^{n + 1}} - 3}}\\ + \lim \frac{{2{n^2} + 3}}{{{n^2} - 1}}\\ = \lim \frac{{1 - {{\left( {\frac{2}{{\sqrt 5 }}} \right)}^n}.2 + {{\left( {\frac{1}{{\sqrt 5 }}} \right)}^n}}}{{5.{{\left( {\frac{2}{{\sqrt 5 }}} \right)}^n} + \sqrt 5  - {{\left( {\frac{3}{{\sqrt 5 }}} \right)}^n}}}\\ + \lim \frac{{2 + \frac{3}{{{n^2}}}}}{{1 - \frac{1}{{{n^2}}}}}\\ = \frac{{1 - 2.0 + 0}}{{5.0 + \sqrt 5  - 0}} + \frac{2}{1}\\ = \frac{{\sqrt 5 }}{5} + 2\end{array}\)

\( \Rightarrow a = 1,\,\,b = 5,\,\,c = 2\).

Vậy \(S = {a^2} + {b^2} + {c^2} = {1^2} + {5^2} + {2^2} = 30.\) 

Câu 15: Trắc nghiệm ID: 263776

Kết quả của giới hạn \(\mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {{x^2} + x}  - \sqrt[3]{{{x^3} - {x^2}}}} \right)\) là:

Xem đáp án

Ta có:

\(\begin{array}{l}\,\,\,\,\mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {{x^2} + x}  - \sqrt[3]{{{x^3} - {x^2}}}} \right)\\ = \mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {{x^2} + x}  - x + x - \sqrt[3]{{{x^3} - {x^2}}}} \right)\\ = \mathop {\lim }\limits_{x \to  + \infty } \left( {\sqrt {{x^2} + x}  - x} \right)\\ + \mathop {\lim }\limits_{x \to  + \infty } \left( {x - \sqrt[3]{{{x^3} - {x^2}}}} \right)\\ = \mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^2} + x - {x^2}}}{{\sqrt {{x^2} + x}  + x}}\\ + \mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^3} - {x^3} + {x^2}}}{{{x^2} + x\sqrt[3]{{{x^3} - {x^2}}} + {{\sqrt[3]{{{x^3} - {x^2}}}}^2}}}\\ = \mathop {\lim }\limits_{x \to  + \infty } \frac{x}{{\sqrt {{x^2} + x}  + x}}\\ + \mathop {\lim }\limits_{x \to  + \infty } \frac{{{x^2}}}{{{x^2} + x\sqrt[3]{{{x^3} - {x^2}}} + {{\sqrt[3]{{{x^3} - {x^2}}}}^2}}}\\ = \mathop {\lim }\limits_{x \to  + \infty } \frac{1}{{\sqrt {1 + \frac{1}{x}}  + 1}}\\ + \mathop {\lim }\limits_{x \to  + \infty } \frac{1}{{1 + \sqrt[3]{{1 - \frac{1}{x}}} + {{\sqrt[3]{{1 - \frac{1}{x}}}}^2}}}\\ = \frac{1}{{1 + 1}} + \frac{1}{{1 + 1 + 1}} = \frac{5}{6}.\end{array}\)

Câu 16: Trắc nghiệm ID: 263777

Trong các mệnh đề sau, mệnh đề nào sai?

Xem đáp án

Dễ thấy đáp án D sai, minh họa như hình vẽ dưới đây cho thấy \(b\parallel \left( \alpha  \right)\).

Câu 17: Trắc nghiệm ID: 263778

Tìm đạo hàm của hàm số \(y = 3\cos x + 1\).

Xem đáp án

Ta có: \(y' =  - 3\sin x\).

Câu 18: Trắc nghiệm ID: 263779

Tính \(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 3x - 4}}{{\left| {x - 1} \right|}}\).

Xem đáp án

Khi \(x \to {1^ - }\) thì \(x < 1 \Rightarrow x - 1 < 0\) nên \(\left| {x - 1} \right| =  - \left( {x - 1} \right)\).

Ta có:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 3x - 4}}{{\left| {x - 1} \right|}}\\ = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{\left( {x - 1} \right)\left( {x + 4} \right)}}{{ - \left( {x - 1} \right)}}\\ = \mathop {\lim }\limits_{x \to {1^ - }} \left( { - x - 4} \right) =  - 1 - 4 =  - 5.\end{array}\)

Câu 19: Trắc nghiệm ID: 263780

Cho hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l}\frac{{\sqrt[3]{{ax + 1}} - \sqrt {1 - bx} }}{x}\,\,\,khi\,\,x \ne 0\\3a - 5b - 1\,\,\,\,khi\,\,x = 0\end{array} \right.\). Tìm điều kiện của tham số a và b để hàm số liên tục tại điểm \(x = 0\).

Xem đáp án

TXĐ: \(D = \mathbb{R},\,\,x = 0 \in D\).

Ta có:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{{\sqrt[3]{{ax + 1}} - \sqrt {1 - bx} }}{x}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{\sqrt[3]{{ax + 1}} - 1}}{x} + \mathop {\lim }\limits_{x \to 0} \frac{{1 - \sqrt {1 - bx} }}{x}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {\sqrt[3]{{ax + 1}} - 1} \right)\left( {{{\sqrt[3]{{ax + 1}}}^2} + \sqrt[3]{{ax + 1}} + 1} \right)}}{{x\left( {{{\sqrt[3]{{ax + 1}}}^2} + \sqrt[3]{{ax + 1}} + 1} \right)}}\\ + \mathop {\lim }\limits_{x \to 0} \frac{{\left( {1 - \sqrt {1 - bx} } \right)\left( {1 + \sqrt {1 - bx} } \right)}}{{x\left( {1 + \sqrt {1 - bx} } \right)}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{ax + 1 - 1}}{{x\left( {{{\sqrt[3]{{ax + 1}}}^2} + \sqrt[3]{{ax + 1}} + 1} \right)}}\\ + \mathop {\lim }\limits_{x \to 0} \frac{{1 - 1 + bx}}{{x\left( {1 + \sqrt {1 - bx} } \right)}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{a}{{{{\sqrt[3]{{ax + 1}}}^2} + \sqrt[3]{{ax + 1}} + 1}}\\ + \mathop {\lim }\limits_{x \to 0} \frac{b}{{1 + \sqrt {1 - bx} }}\\ = \frac{a}{{1 + 1 + 1}} + \frac{b}{{1 + 1}}\\ = \frac{a}{3} + \frac{b}{2}\end{array}\)

\(f\left( 0 \right) = 3a - 5b - 1\).

Để hàm số liên tục tại \(x = 0\) thì \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right)\)

\( \Leftrightarrow \frac{a}{3} + \frac{b}{2} = 3a - 5b - 1\) \( \Leftrightarrow \frac{8}{3}a - \frac{{11}}{2}b = 1\)\( \Leftrightarrow 16a - 33b = 6\)

Câu 20: Trắc nghiệm ID: 263781

Cho hàm số \(y = {\sin ^2}x\). Mệnh đề nào dưới đây đúng?

Xem đáp án

Ta có:

\(\begin{array}{l}y' = \left( {{{\sin }^2}x} \right)' = 2\sin x.\left( {\sin x} \right)'\\\,\,\,\,\, = 2\sin x.\cos x = \sin 2x\end{array}\)

Thay vào đáp án B ta có:

\(\begin{array}{l}\,\,\,\,\,4y{\cos ^2}x - {\left( {y'} \right)^2} = 0\\ \Leftrightarrow 4{\sin ^2}x{\cos ^2}x - {\left( {\sin 2x} \right)^2} = 0\\ \Leftrightarrow {\left( {2\sin x\cos x} \right)^2} - {\left( {\sin 2x} \right)^2} = 0\end{array}\)

\( \Leftrightarrow {\left( {\sin 2x} \right)^2} - {\left( {\sin 2x} \right)^2} = 0\)  (luôn đúng).

Câu 21: Trắc nghiệm ID: 263782

Cho hình chóp S.ABCD có \(SA \bot \left( {ABCD} \right)\) và đáy ABCD là hình vuông. Mệnh đề nào dưới đây đúng?

Xem đáp án

Vì ABCD là hình vuông nên \(AC \bot BD\).

Ta có: \(\left\{ \begin{array}{l}BD \bot AC\\BD \bot SA\end{array} \right. \Rightarrow BD \bot \left( {SAC} \right)\).

\(\left\{ \begin{array}{l}BD \bot \left( {SAC} \right)\\BD \subset \left( {SBD} \right)\end{array} \right. \Rightarrow \left( {SAC} \right) \bot \left( {SBD} \right)\).

Vậy mệnh đề đúng là A.

Câu 22: Trắc nghiệm ID: 263783

Tìm vi phân của hàm số \(y = 3{x^2} - 2x + 1\).

Xem đáp án

Ta có:

\(\begin{array}{l}dy = \left( {3{x^2} - 2x + 1} \right)dx\\dy = \left( {6x - 2} \right)dx\end{array}\)

Câu 24: Trắc nghiệm ID: 263785

Tính \(\mathop {\lim }\limits_{x \to 4} \frac{{x + 5}}{{x - 1}}\).

Xem đáp án

Ta có: \(\mathop {\lim }\limits_{x \to 4} \frac{{x + 5}}{{x - 1}} = \frac{{4 + 5}}{{4 - 1}} = \frac{9}{3} = 3.\)

Câu 25: Trắc nghiệm ID: 263786

Cho chóp tứ giác đều S.ABCD có AB = a và \(SB = \frac{{a\sqrt 3 }}{2}\). Tính khoảng cách từ A đến mặt phẳng (SBC).

Xem đáp án

Gọi \(O = AC \cap BD\). Vì chóp S.ABCD đều nên \(SO \bot \left( {ABCD} \right)\).

Ta có: \(AO \cap \left( {SBC} \right) = C\)\( \Rightarrow \frac{{d\left( {A;\left( {SBC} \right)} \right)}}{{d\left( {O;\left( {SBC} \right)} \right)}} = \frac{{AC}}{{OC}} = 2\)

\( \Rightarrow d\left( {A;\left( {SBC} \right)} \right) = 2d\left( {O;\left( {SBC} \right)} \right)\).

Gọi M là trung điểm của BC, suy ra OM là đường trung bình của tam giác ABC.

\( \Rightarrow OM\parallel AB\) và \(OM = \frac{1}{2}BC = \frac{1}{2}AB = \frac{a}{2}\). Mà \(AB \bot BC\) nên \(OM \bot BC\).

Ta có: \(\left\{ \begin{array}{l}BC \bot OM\\BC \bot SO\end{array} \right. \Rightarrow BC \bot \left( {SOM} \right)\).

\(\left\{ \begin{array}{l}BC \bot \left( {SOM} \right)\\BC \subset \left( {SBC} \right)\end{array} \right.\)\( \Rightarrow \left( {SOM} \right) \bot \left( {SBC} \right)\)  và \(\left( {SOM} \right) \cap \left( {SBC} \right) = SM\).

Trong (SOM) kẻ \(OH \bot SM\) ta có:

\(\left\{ \begin{array}{l}\left( {SBC} \right) \bot \left( {SOM} \right)\\\left( {SBC} \right) \cap \left( {SOM} \right) = SM\\OH \subset \left( {SOM} \right),\,\,OH \bot SM\end{array} \right.\)\( \Rightarrow OH \bot \left( {SBC} \right)\)

Do đó \(d\left( {O;\left( {SBC} \right)} \right) = OH\) và \(d\left( {A;\left( {SBC} \right)} \right) = 2OH\).

Vì ABCD là hình vuông cạnh a nên \(AC = BD = a\sqrt 2 \) \( \Rightarrow OB = \frac{1}{2}BD = \frac{{a\sqrt 2 }}{2}\).

Áp dụng định lí Pytago trong tam giác vuông SOB có: \(SO = \sqrt {S{B^2} - O{B^2}} \)\( = \sqrt {\frac{{3{a^2}}}{4} - \frac{{2{a^2}}}{4}}  = \frac{a}{2}\)

Áp dụng hệ thức lượng trong tam giác vuông SOM có:

\(\frac{1}{{O{H^2}}} = \frac{1}{{S{O^2}}} + \frac{1}{{O{M^2}}}\)\( = \frac{4}{{{a^2}}} + \frac{4}{{{a^2}}} = \frac{8}{{{a^2}}}\)  \( \Rightarrow OH = \frac{{a\sqrt 2 }}{4}\).

Vậy \(d\left( {A;\left( {SBC} \right)} \right) = 2OH = \frac{{a\sqrt 2 }}{2}\).

Câu 26: Trắc nghiệm ID: 263787

Cho tứ diện ABCD, gọi G là trọng tâm của tam giác BCD. Mệnh đề nào dưới đây đúng?

Xem đáp án

Vì G là trọng tâm của tam giác BCD thì \(\overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0 \).

Câu 27: Trắc nghiệm ID: 263788

Tính \(\lim \frac{{5n + 1}}{{3n + 7}}\).

Xem đáp án

\(\lim \frac{{5n + 1}}{{3n + 7}} = \lim \frac{{5 + \frac{1}{n}}}{{3 + \frac{7}{n}}} = \frac{5}{3}.\)

Câu 28: Trắc nghiệm ID: 263789

Tìm đạo hàm cấp hai của hàm số \(y = \frac{1}{{x + 2}}\).

Xem đáp án

Ta có:

\(\begin{array}{l}y' = \left( {\frac{1}{{x + 2}}} \right)' = \frac{{ - \left( {x + 2} \right)'}}{{{{\left( {x + 2} \right)}^2}}} = \frac{{ - 1}}{{{{\left( {x + 2} \right)}^2}}}\\y'' = \left( {\frac{{ - 1}}{{{{\left( {x + 2} \right)}^2}}}} \right)' = \frac{{\left[ {{{\left( {x + 2} \right)}^2}} \right]'}}{{{{\left( {x + 2} \right)}^4}}}\\ = \frac{{2\left( {x + 2} \right).\left( {x + 2} \right)'}}{{{{\left( {x + 2} \right)}^4}}} = \frac{2}{{{{\left( {x + 2} \right)}^3}}}\end{array}\)

Câu 29: Trắc nghiệm ID: 263790

Cho hình lập phương ABCD.A’B’C’D’. Gọi \(\alpha \) là góc giữa hai đường thẳng A’B và CB’. Tính \(\alpha \).

Xem đáp án

Vì A’BCD’ là hình bình hành (BC = A’D’ và BC // A’D’) nên A’B // CD’

\( \Rightarrow \angle \left( {A'B;CB'} \right) = \angle \left( {CD';CB'} \right)\).

Do BCC’B’, CDD’C’, A’B’C’D’ là các hình vuông cạnh a nên \(B'C = CD' = B'D' = a\sqrt 2 \).

Do đó tam giác B’CD’ là tam giác đều nên \(\angle B'CD' = {60^0}\).

Vậy \(\angle \left( {A'B;CB'} \right) = \angle \left( {CD';CB'} \right)\)\( = \angle B'CD' = {60^0}\) hay \(\alpha  = {60^0}\).

Câu 30: Trắc nghiệm ID: 263791

Tìm đạo hàm của hàm số \(y = {x^3} - 2x\).

Xem đáp án

Ta có: \(y' = \left( {{x^3} - 2x} \right)' = 3{x^2} - 2\).

Câu 31: Trắc nghiệm ID: 263792

Giới hạn \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{2x - \sqrt {x + 3} }}{{x + 1}}\) bằng:

Xem đáp án

Ta có: \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{2x - \sqrt {x + 3} }}{{x + 1}} = \frac{{2.1 - \sqrt {1 + 3} }}{{1 + 1}} = 0\).

Câu 32: Trắc nghiệm ID: 263793

Cho hàm số \(f\left( x \right) = \frac{{{x^2} + 2}}{{x - 2}}\) . Giá trị \(f'\left( 1 \right)\) bằng

Xem đáp án

Ta có \(f\left( x \right) = \frac{{{x^2} + 2}}{{x - 2}}\)  (ĐK: \(x \ne 2\))

Suy ra \(f'\left( x \right) = {\left( {\frac{{{x^2} + 2}}{{x - 2}}} \right)^\prime }\)

\(\begin{array}{l} = \frac{{{{\left( {{x^2} + 2} \right)}^\prime }\left( {x - 2} \right) - \left( {{x^2} + 2} \right){{\left( {x - 2} \right)}^\prime }}}{{{{\left( {x - 2} \right)}^2}}}\\ = \frac{{2x\left( {x - 2} \right) - \left( {{x^2} + 2} \right)}}{{{{\left( {x - 2} \right)}^2}}}\end{array}\)

\( = \frac{{2{x^2} - 4x - {x^2} - 2}}{{{{\left( {x - 2} \right)}^2}}} = \frac{{{x^2} - 4x - 2}}{{{{\left( {x - 2} \right)}^2}}}\)

Suy ra \(f'\left( 1 \right) = \frac{{{1^2} - 4.1 - 2}}{{{{\left( {1 - 2} \right)}^2}}} =  - 5\)

Câu 33: Trắc nghiệm ID: 263794

Giới hạn \(\mathop {\lim }\limits_{x \to  - \infty } \left( {{x^2} - 3x + 1} \right)\) bằng

Xem đáp án

Ta có: \(\mathop {\lim }\limits_{x \to  - \infty } \left( {{x^2} - 3x + 1} \right)\)\( = \mathop {\lim }\limits_{x \to  - \infty } \left[ {{x^2}\left( {1 - \frac{3}{x} + \frac{1}{{{x^2}}}} \right)} \right]\)

Vì \(\mathop {\lim }\limits_{x \to  - \infty } {x^2} =  + \infty \) và \(\mathop {\lim }\limits_{x \to  - \infty } \left( {1 - \frac{3}{x} + \frac{1}{{{x^2}}}} \right) = 1\) nên \(\mathop {\lim }\limits_{x \to  - \infty } \left[ {{x^2}\left( {1 - \frac{3}{x} + \frac{1}{{{x^2}}}} \right)} \right] =  + \infty \).

Vậy \(\mathop {\lim }\limits_{x \to  - \infty } \left( {{x^2} - 3x + 1} \right) =  + \infty \).

Câu 34: Trắc nghiệm ID: 263795

Trong bốn giới hạn sau đây, giới hạn nào bằng \(2?\)

Xem đáp án

+ Đáp án A : \(\lim \frac{{n + 1}}{{2n - 1}} = \lim \frac{{\frac{n}{n} + \frac{1}{n}}}{{\frac{{2n}}{n} - \frac{1}{n}}}\)\( = \lim \frac{{1 + \frac{1}{n}}}{{2 - \frac{1}{n}}} = \frac{1}{2} \ne 2\)  nên loại A.

+ Đáp án B : \(\lim \frac{{1 - 4n}}{{2n + 3}} = \lim \frac{{\frac{1}{n} - \frac{{4n}}{n}}}{{\frac{{2n}}{n} + \frac{3}{n}}}\)\( = \lim \frac{{\frac{1}{n} - 4}}{{2 + \frac{3}{n}}} = \frac{{ - 4}}{2} =  - 2 \ne 2\)   nên loại B.

+ Đáp án C : \(\lim \frac{{2n + 3}}{{n - 5}} = \lim \frac{{\frac{{2n}}{n} + \frac{3}{n}}}{{\frac{n}{n} - \frac{5}{n}}}\)\( = \lim \frac{{2 + \frac{3}{n}}}{{1 - \frac{5}{n}}} = \frac{2}{1} = 2\)  nên chọn C.

+ Đáp án D : \(\lim \frac{{{n^2} + 2n - 3}}{{{n^2} - 2n + 2}}\)\( = \lim \frac{{\frac{{{n^2}}}{{{n^2}}} + \frac{{2n}}{n} - \frac{3}{{{n^2}}}}}{{\frac{{{n^2}}}{{{n^2}}} - \frac{{2n}}{{{n^2}}} + \frac{2}{{{n^2}}}}}\) \( = \lim \frac{{1 + \frac{2}{n} - \frac{3}{{{n^2}}}}}{{1 - \frac{2}{n} + \frac{2}{{{n^2}}}}} = 1 \ne 2\)   nên loại D.

Câu 35: Trắc nghiệm ID: 263796

Cho hàm số \(y = {x^4} - 2{x^2} - 1\) có đồ thị \(\left( C \right)\). Số tiếp tuyến song song với trục hoành của đồ thị \(\left( C \right)\) là

Xem đáp án

Ta có: \(y = {x^4} - 2{x^2} - 1\)\( \Rightarrow y' = 4{x^3} - 4x\).

Gọi \({M_0}\left( {{x_0};{y_0}} \right)\) là tiếp điểm. Để tiếp tuyến tại \(M\) song song với trục hoành thì \(k = f'\left( {{x_0}} \right) = 0\) \( \Leftrightarrow 4x_0^3 - 4{x_0} = 0\)\( \Leftrightarrow 4{x_0}\left( {x_0^2 - 1} \right) = 0\) \( \Leftrightarrow \left[ \begin{array}{l}{x_0} = 0\\{x_0} =  \pm 1\end{array} \right.\) .

Với \({x_0} = 0 \Rightarrow {y_0} =  - 1\) ta có điểm \(M\left( {0; - 1} \right)\).

\( \Rightarrow \) Tiếp tuyến của đồ thị hàm số tại \(M\left( {0; - 1} \right)\) có phương trình \(y = 0\left( {x - 0} \right) - 1\) hay \(y =  - 1\).

Với \({x_0} =  - 1 \Rightarrow {y_0} =  - 2\) ta có điểm \(M\left( { - 1; - 2} \right)\).

\( \Rightarrow \) Tiếp tuyến của đồ thị hàm số tại \(M\left( { - 1; - 2} \right)\) có phương trình \(y = 0\left( {x + 1} \right) - 2\) hay \(y =  - 2\).

Với \({x_0} = 1 \Rightarrow {y_0} =  - 2\) ta có điểm \(M\left( {1; - 2} \right)\).

\( \Rightarrow \) Tiếp tuyến của đồ thị hàm số tại \(M\left( {1; - 2} \right)\) có phương trình \(y = 0\left( {x - 1} \right) - 2\) hay \(y =  - 2\).

Do đó có \(2\) tiếp tuyến cần tìm là \(y =  - 1\) và \(y =  - 2\).

Câu 36: Trắc nghiệm ID: 263797

Hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình chữ nhật. Tam giác \(SAB\) là tam giác đều cạnh \(a.\) Mặt phẳng \(\left( {SAB} \right)\) vuông góc với mặt đáy. Khoảng cách giữa hai đường thẳng \(SA\) và \(BC\) bằng:

Xem đáp án

Gọi \(H\) là trung điểm đoạn \(AB\). Khi đó \(SH \bot AB\) (do tam giác \(SAB\) đều)

Lại có \(\left\{ \begin{array}{l}\left( {SAB} \right) \bot \left( {ABC} \right)\,\left( {gt} \right)\\\left( {SAB} \right) \cap \left( {ABC} \right) = BA\\SH \bot AB\left( {cmt} \right);\,SH \subset \left( {SAB} \right)\end{array} \right.\)\( \Rightarrow SH \bot \left( {ABC} \right) \Rightarrow SH \bot BC\)  

Mà \(BC \bot AB\) (do \(ABCD\) là hình vuông) nên \(BC \bot \left( {SAB} \right)\)

Trong tam giác \(SAB\), lấy \(K\) là trung điểm \(SA \Rightarrow BK \bot SA\) (do tam giác \(SAB\) đều)

Ta có \(\left\{ \begin{array}{l}BC \bot BK\left( {do\,BC \bot \left( {SAB} \right)} \right)\\BK \bot SA\end{array} \right.\)  nên \(BK\) là đoạn vuông góc chung của \(SA\) và \(BC\)

Mà \(BK\) là đường trung tuyến trong tam giác \(SAB\) đều cạnh \(a\) nên \(BK = \frac{{a\sqrt 3 }}{2}\)

Hay khoảng cách giữa \(SA\) và \(BC\) là \(BK = \frac{{a\sqrt 3 }}{2}.\)

Câu 37: Trắc nghiệm ID: 263798

Nếu \(f\left( x \right) = x\sin x\) thì \(f'\left( {\frac{{7\pi }}{2}} \right)\) bằng

Xem đáp án

\(f\left( x \right) = x\sin x\)

\( \Rightarrow f'\left( x \right) = \left( {x\sin x} \right)'\)\( = \left( x \right)'\sin x + x\left( {\sin x} \right)'\) \( = \sin x + x\cos x\)

Do đó \(f'\left( {\frac{{7\pi }}{2}} \right) = \sin \frac{{7\pi }}{2} + \frac{{7\pi }}{2}.\cos \frac{{7\pi }}{2}\)\( =  - 1 + \frac{{7\pi }}{2}.0 =  - 1\) .

Câu 38: Trắc nghiệm ID: 263799

Giới hạn \(\mathop {\lim }\limits_{x \to 2018} \frac{{{x^2} - 2019x + 2018}}{{x - 2018}}\)  bằng

Xem đáp án

Ta có \(\mathop {\lim }\limits_{x \to 2018} \frac{{{x^2} - 2019x + 2018}}{{x - 2018}}\)\( = \mathop {\lim }\limits_{x \to 2018} \frac{{\left( {x - 2018} \right)\left( {x - 1} \right)}}{{x - 2018}}\)  \( = \mathop {\lim }\limits_{x \to 2018} \left( {x - 1} \right)\) \( = 2018 - 1 = 2017\)

Câu 39: Trắc nghiệm ID: 263800

Đạo hàm của hàm số \(y = \sqrt {\sin x + 2} \) bằng

Xem đáp án

Ta có: \(y' = \left( {\sqrt {\sin x + 2} } \right)'\)\( = \frac{{\left( {\sin x + 2} \right)'}}{{2\sqrt {\sin x + 2} }}\) \( = \frac{{\cos x}}{{2\sqrt {\sin x + 2} }}\)

Câu 40: Trắc nghiệm ID: 263801

Giới hạn \(\mathop {\lim }\limits_{x \to 0} \frac{{\cos 2018x - \cos 2019x}}{x}\)  bằng

Xem đáp án

Ta có \(\mathop {\lim }\limits_{x \to 0} \frac{{\cos 2018x - \cos 2019x}}{x}\)

\( = \mathop {\lim }\limits_{x \to 0} \frac{{ - 2\sin \frac{{4037x}}{2}.\sin \left( { - \frac{x}{2}} \right)}}{x}\)  

\( = \mathop {\lim }\limits_{x \to 0} \left( {\sin \frac{{4037x}}{2}} \right).\mathop {\lim }\limits_{x \to 0} \frac{{\sin \frac{x}{2}}}{{\frac{x}{2}}}\)

\( = 0.1 = 0\)  

Bắt đầu thi để xem toàn bộ câu hỏi trong đề

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »