Câu hỏi Đáp án 3 năm trước 41

Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\) có \(AB = a\), cạnh bên \(AA' = \frac{{3a}}{2}\) (tham khảo hình vẽ bên). Tính khoảng cách từ điểm \(C'\) đến mặt phẳng \(\left( {CA'B'} \right)\).

A. \(\frac{{2a}}{{\sqrt 3 }}\)

B. \(\frac{{3a}}{2}\)

C. \(\frac{{a\sqrt 3 }}{4}\)

D. \(\frac{{3a}}{4}\)

Đáp án chính xác ✅

Lời giải của giáo viên

verified ToanVN.com

Tam giác \(CA'B'\) cân tại \(C\) vì \(CA' = CB'\) (hai đường chéo của hai hình chữ nhật bằng nhau)

Gọi M là trung điểm của \(A'B'\).

Ta có: \(A'B' \bot CM\) và \(A'B' \bot C'M\) nên \(A'B' \bot \left( {CMC'} \right)\).

Trong \(\left( {CMC'} \right)\), kẻ \(C'H \bot CM\) ta có:

\(\left\{ \begin{array}{l}C'H \bot A'B'\\C'H \bot CM\end{array} \right.\) \( \Rightarrow C'H \bot \left( {CA'B'} \right)\)

\( \Rightarrow d\left( {C',\left( {CA'B'} \right)} \right) = C'H\).

Tam giác \(A'B'C'\) đều cạnh \(a\) nên \(C'M = \frac{{a\sqrt 3 }}{2}\).

Tam giác \(CMC'\) vuông tại \(C'\) nên:

\(\frac{1}{{C'{H^2}}} = \frac{1}{{C'{C^2}}} + \frac{1}{{C'{M^2}}}\)\( = \frac{1}{{{{\left( {\frac{{3a}}{2}} \right)}^2}}} + \frac{1}{{{{\left( {\frac{{a\sqrt 3 }}{2}} \right)}^2}}} = \frac{{16}}{{9{a^2}}}\)

\( \Rightarrow C'{H^2} = \frac{{9{a^2}}}{{16}} \Rightarrow C'H = \frac{{3a}}{4}\)

Vậy \(d\left( {C',\left( {CA'B'} \right)} \right) = \frac{{3a}}{4}\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số \(f\left( x \right) = \frac{{{x^2} + 2}}{{x - 2}}\) . Giá trị \(f'\left( 1 \right)\) bằng

Xem lời giải » 3 năm trước 61
Câu 2: Trắc nghiệm

Cho hàm số \(y = {x^3} + 3{x^2} - 1\) có đồ thị \(\left( C \right)\). Viết phương trình tiếp tuyến của \(\left( C \right)\) tại điểm M có hoành độ bằng \( - 1\)

Xem lời giải » 3 năm trước 60
Câu 3: Trắc nghiệm

Cho hàm số \(y = {x^4} - 2{x^2} - 1\) có đồ thị \(\left( C \right)\). Số tiếp tuyến song song với trục hoành của đồ thị \(\left( C \right)\) là

Xem lời giải » 3 năm trước 58
Câu 4: Trắc nghiệm

Giới hạn \(\mathop {\lim }\limits_{x \to 2018} \frac{{{x^2} - 2019x + 2018}}{{x - 2018}}\)  bằng

Xem lời giải » 3 năm trước 49
Câu 5: Trắc nghiệm

Giới hạn \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{2x - \sqrt {x + 3} }}{{x + 1}}\) bằng:

Xem lời giải » 3 năm trước 45
Câu 6: Trắc nghiệm

Tính \(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 3x - 4}}{{\left| {x - 1} \right|}}\).

Xem lời giải » 3 năm trước 44
Câu 7: Trắc nghiệm

Hàm số  \(y = f(x) = \frac{{{x^3} + x\cos x + \sin x}}{{2\sin x + 3}}\) liên tục trên:

Xem lời giải » 3 năm trước 44
Câu 8: Trắc nghiệm

Cho tứ diện ABCD, gọi G là trọng tâm của tam giác BCD. Mệnh đề nào dưới đây đúng?

Xem lời giải » 3 năm trước 43
Câu 9: Trắc nghiệm

Giá trị của giới hạn \(\lim \frac{{\sqrt {9{n^2} - n}  - \sqrt {n + 2} }}{{3n - 2}}\) là:

Xem lời giải » 3 năm trước 43
Câu 10: Trắc nghiệm

Giới hạn \(\mathop {\lim }\limits_{x \to  - \infty } \left( {{x^2} - 3x + 1} \right)\) bằng

Xem lời giải » 3 năm trước 42
Câu 11: Trắc nghiệm

Trong bốn giới hạn sau đây, giới hạn nào bằng \(2?\)

Xem lời giải » 3 năm trước 42
Câu 12: Trắc nghiệm

Tính \(\mathop {\lim }\limits_{x \to 4} \frac{{x + 5}}{{x - 1}}\).

Xem lời giải » 3 năm trước 41
Câu 13: Trắc nghiệm

Một chất điểm chuyển động theo phương trình \(S = {t^3} + 5{t^2} - 5\), trong đó \(t > 0\), t được tính bằng giây (s) và S được tính bằng mét (m). Tính vận tốc của chất điểm tại thời điểm \(t = 2\) (giây).

Xem lời giải » 3 năm trước 41
Câu 14: Trắc nghiệm

Cho hình lập phương ABCD.A’B’C’D’. Gọi \(\alpha \) là góc giữa hai đường thẳng A’B và CB’. Tính \(\alpha \).

Xem lời giải » 3 năm trước 40
Câu 15: Trắc nghiệm

Trong các mệnh đề sau, mệnh đề nào sai?

Xem lời giải » 3 năm trước 40

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »