Câu hỏi Đáp án 3 năm trước 39

Cho hàm số \(y = f\left( x \right) = \left\{ \begin{array}{l}\frac{{\sqrt[3]{{ax + 1}} - \sqrt {1 - bx} }}{x}\,\,\,khi\,\,x \ne 0\\3a - 5b - 1\,\,\,\,khi\,\,x = 0\end{array} \right.\). Tìm điều kiện của tham số a và b để hàm số liên tục tại điểm \(x = 0\).

A. 2a - 6b = 1

B. 2a - 4b = 1

C. 16a - 33b = 6

Đáp án chính xác ✅

D. a - 8b = 1

Lời giải của giáo viên

verified ToanVN.com

TXĐ: \(D = \mathbb{R},\,\,x = 0 \in D\).

Ta có:

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{{\sqrt[3]{{ax + 1}} - \sqrt {1 - bx} }}{x}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{\sqrt[3]{{ax + 1}} - 1}}{x} + \mathop {\lim }\limits_{x \to 0} \frac{{1 - \sqrt {1 - bx} }}{x}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{\left( {\sqrt[3]{{ax + 1}} - 1} \right)\left( {{{\sqrt[3]{{ax + 1}}}^2} + \sqrt[3]{{ax + 1}} + 1} \right)}}{{x\left( {{{\sqrt[3]{{ax + 1}}}^2} + \sqrt[3]{{ax + 1}} + 1} \right)}}\\ + \mathop {\lim }\limits_{x \to 0} \frac{{\left( {1 - \sqrt {1 - bx} } \right)\left( {1 + \sqrt {1 - bx} } \right)}}{{x\left( {1 + \sqrt {1 - bx} } \right)}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{ax + 1 - 1}}{{x\left( {{{\sqrt[3]{{ax + 1}}}^2} + \sqrt[3]{{ax + 1}} + 1} \right)}}\\ + \mathop {\lim }\limits_{x \to 0} \frac{{1 - 1 + bx}}{{x\left( {1 + \sqrt {1 - bx} } \right)}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{a}{{{{\sqrt[3]{{ax + 1}}}^2} + \sqrt[3]{{ax + 1}} + 1}}\\ + \mathop {\lim }\limits_{x \to 0} \frac{b}{{1 + \sqrt {1 - bx} }}\\ = \frac{a}{{1 + 1 + 1}} + \frac{b}{{1 + 1}}\\ = \frac{a}{3} + \frac{b}{2}\end{array}\)

\(f\left( 0 \right) = 3a - 5b - 1\).

Để hàm số liên tục tại \(x = 0\) thì \(\mathop {\lim }\limits_{x \to 0} f\left( x \right) = f\left( 0 \right)\)

\( \Leftrightarrow \frac{a}{3} + \frac{b}{2} = 3a - 5b - 1\) \( \Leftrightarrow \frac{8}{3}a - \frac{{11}}{2}b = 1\)\( \Leftrightarrow 16a - 33b = 6\)

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số \(f\left( x \right) = \frac{{{x^2} + 2}}{{x - 2}}\) . Giá trị \(f'\left( 1 \right)\) bằng

Xem lời giải » 3 năm trước 61
Câu 2: Trắc nghiệm

Cho hàm số \(y = {x^3} + 3{x^2} - 1\) có đồ thị \(\left( C \right)\). Viết phương trình tiếp tuyến của \(\left( C \right)\) tại điểm M có hoành độ bằng \( - 1\)

Xem lời giải » 3 năm trước 60
Câu 3: Trắc nghiệm

Cho hàm số \(y = {x^4} - 2{x^2} - 1\) có đồ thị \(\left( C \right)\). Số tiếp tuyến song song với trục hoành của đồ thị \(\left( C \right)\) là

Xem lời giải » 3 năm trước 58
Câu 4: Trắc nghiệm

Giới hạn \(\mathop {\lim }\limits_{x \to 2018} \frac{{{x^2} - 2019x + 2018}}{{x - 2018}}\)  bằng

Xem lời giải » 3 năm trước 49
Câu 5: Trắc nghiệm

Giới hạn \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{2x - \sqrt {x + 3} }}{{x + 1}}\) bằng:

Xem lời giải » 3 năm trước 45
Câu 6: Trắc nghiệm

Tính \(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 3x - 4}}{{\left| {x - 1} \right|}}\).

Xem lời giải » 3 năm trước 44
Câu 7: Trắc nghiệm

Hàm số  \(y = f(x) = \frac{{{x^3} + x\cos x + \sin x}}{{2\sin x + 3}}\) liên tục trên:

Xem lời giải » 3 năm trước 44
Câu 8: Trắc nghiệm

Giá trị của giới hạn \(\lim \frac{{\sqrt {9{n^2} - n}  - \sqrt {n + 2} }}{{3n - 2}}\) là:

Xem lời giải » 3 năm trước 43
Câu 9: Trắc nghiệm

Cho tứ diện ABCD, gọi G là trọng tâm của tam giác BCD. Mệnh đề nào dưới đây đúng?

Xem lời giải » 3 năm trước 43
Câu 10: Trắc nghiệm

Trong bốn giới hạn sau đây, giới hạn nào bằng \(2?\)

Xem lời giải » 3 năm trước 42
Câu 11: Trắc nghiệm

Giới hạn \(\mathop {\lim }\limits_{x \to  - \infty } \left( {{x^2} - 3x + 1} \right)\) bằng

Xem lời giải » 3 năm trước 42
Câu 12: Trắc nghiệm

Tính \(\mathop {\lim }\limits_{x \to 4} \frac{{x + 5}}{{x - 1}}\).

Xem lời giải » 3 năm trước 41
Câu 13: Trắc nghiệm

Một chất điểm chuyển động theo phương trình \(S = {t^3} + 5{t^2} - 5\), trong đó \(t > 0\), t được tính bằng giây (s) và S được tính bằng mét (m). Tính vận tốc của chất điểm tại thời điểm \(t = 2\) (giây).

Xem lời giải » 3 năm trước 41
Câu 14: Trắc nghiệm

Trong các mệnh đề sau, mệnh đề nào sai?

Xem lời giải » 3 năm trước 40
Câu 15: Trắc nghiệm

Cho hình lập phương ABCD.A’B’C’D’. Gọi \(\alpha \) là góc giữa hai đường thẳng A’B và CB’. Tính \(\alpha \).

Xem lời giải » 3 năm trước 40

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »