Biết rằng \(\lim \left( {\frac{{{{\left( {\sqrt 5 } \right)}^n} - {2^{n + 1}} + 1}}{{{{5.2}^n} + {{\left( {\sqrt 5 } \right)}^{n + 1}} - 3}} + \frac{{2{n^2} + 3}}{{{n^2} - 1}}} \right)\) \( = \frac{{a\sqrt 5 }}{b} + c\) với \(a,b,c \in \mathbb{Z}\). Tính giá trị của biểu thức \(S = {a^2} + {b^2} + {c^2}\).
A. S = 26
B. S = 30
C. S = 21
D. S = 31
Lời giải của giáo viên
ToanVN.com
Ta có:
\(\begin{array}{l}\,\,\,\,\lim \left( {\frac{{{{\left( {\sqrt 5 } \right)}^n} - {2^{n + 1}} + 1}}{{{{5.2}^n} + {{\left( {\sqrt 5 } \right)}^{n + 1}} - 3}} + \frac{{2{n^2} + 3}}{{{n^2} - 1}}} \right)\\ = \lim \frac{{{{\left( {\sqrt 5 } \right)}^n} - {2^{n + 1}} + 1}}{{{{5.2}^n} + {{\left( {\sqrt 5 } \right)}^{n + 1}} - 3}}\\ + \lim \frac{{2{n^2} + 3}}{{{n^2} - 1}}\\ = \lim \frac{{1 - {{\left( {\frac{2}{{\sqrt 5 }}} \right)}^n}.2 + {{\left( {\frac{1}{{\sqrt 5 }}} \right)}^n}}}{{5.{{\left( {\frac{2}{{\sqrt 5 }}} \right)}^n} + \sqrt 5 - {{\left( {\frac{3}{{\sqrt 5 }}} \right)}^n}}}\\ + \lim \frac{{2 + \frac{3}{{{n^2}}}}}{{1 - \frac{1}{{{n^2}}}}}\\ = \frac{{1 - 2.0 + 0}}{{5.0 + \sqrt 5 - 0}} + \frac{2}{1}\\ = \frac{{\sqrt 5 }}{5} + 2\end{array}\)
\( \Rightarrow a = 1,\,\,b = 5,\,\,c = 2\).
Vậy \(S = {a^2} + {b^2} + {c^2} = {1^2} + {5^2} + {2^2} = 30.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f\left( x \right) = \frac{{{x^2} + 2}}{{x - 2}}\) . Giá trị \(f'\left( 1 \right)\) bằng
Cho hàm số \(y = {x^3} + 3{x^2} - 1\) có đồ thị \(\left( C \right)\). Viết phương trình tiếp tuyến của \(\left( C \right)\) tại điểm M có hoành độ bằng \( - 1\)
Cho hàm số \(y = {x^4} - 2{x^2} - 1\) có đồ thị \(\left( C \right)\). Số tiếp tuyến song song với trục hoành của đồ thị \(\left( C \right)\) là
Giới hạn \(\mathop {\lim }\limits_{x \to 2018} \frac{{{x^2} - 2019x + 2018}}{{x - 2018}}\) bằng
Giới hạn \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{2x - \sqrt {x + 3} }}{{x + 1}}\) bằng:
Tính \(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 3x - 4}}{{\left| {x - 1} \right|}}\).
Hàm số \(y = f(x) = \frac{{{x^3} + x\cos x + \sin x}}{{2\sin x + 3}}\) liên tục trên:
Giá trị của giới hạn \(\lim \frac{{\sqrt {9{n^2} - n} - \sqrt {n + 2} }}{{3n - 2}}\) là:
Cho tứ diện ABCD, gọi G là trọng tâm của tam giác BCD. Mệnh đề nào dưới đây đúng?
Giới hạn \(\mathop {\lim }\limits_{x \to - \infty } \left( {{x^2} - 3x + 1} \right)\) bằng
Trong bốn giới hạn sau đây, giới hạn nào bằng \(2?\)
Tính \(\mathop {\lim }\limits_{x \to 4} \frac{{x + 5}}{{x - 1}}\).
Một chất điểm chuyển động theo phương trình \(S = {t^3} + 5{t^2} - 5\), trong đó \(t > 0\), t được tính bằng giây (s) và S được tính bằng mét (m). Tính vận tốc của chất điểm tại thời điểm \(t = 2\) (giây).
Cho hình lập phương ABCD.A’B’C’D’. Gọi \(\alpha \) là góc giữa hai đường thẳng A’B và CB’. Tính \(\alpha \).
