Câu hỏi Đáp án 3 năm trước 36

Cho hình chóp S.ABC có SA^(ABC). Gọi H, K lần lượt là trực tâm các tam giác SBC và ABC. Mệnh đề nào sai trong các mệnh đề sau?

A. BC \(\bot\) (SAH).

B. HK \(\bot\) (SBC).

C. BC \(\bot\) (SAB).

Đáp án chính xác ✅

D. SH, AK và BC đồng quy.

Lời giải của giáo viên

verified ToanVN.com

Gọi \(M\) là giao điểm của \(AK\) và \(BC\), ta có \(AM \bot BC\).

\(\left\{ \begin{array}{l}BC \bot AM\\BC \bot SA\,\,\,\left( {SA \bot \left( {ABC} \right)} \right)\end{array} \right.\)\( \Rightarrow BC \bot \left( {SAM} \right)\)

\( \Rightarrow BC \bot SM \Rightarrow SM\) là đường cao của \(\Delta SBC\), do đó \(K \in SM\).

Suy ra SH, AK và BC đồng quy tại M nên đáp án D đúng.

Mà \(BC \bot \left( {SAM} \right)\,\,\left( {cmt} \right),\)\(\left( {SAM} \right) \equiv \left( {SAH} \right)\)  nên \(BC \bot \left( {SAH} \right)\), suy ra đáp án A đúng.

Trong \(\left( {ABC} \right)\) kéo dài BK cắt AC tại P, trong (SBC) kéo dài BH cắt SC tại N.

Ta có: \(\left\{ \begin{array}{l}BP \bot AC\\BP \bot SA\,\,\left( {SA \bot \left( {ABC} \right)} \right)\end{array} \right.\)\( \Rightarrow BP \bot \left( {SAC} \right)\)  \( \Rightarrow BP \bot SC\).

Suy ra \(\left\{ \begin{array}{l}SC \bot BP\\SC \bot BN\end{array} \right.\)\( \Rightarrow SC \bot \left( {BPN} \right)\), mà \(HK \subset \left( {BPN} \right) \Rightarrow HK \bot SC\).

Mặt khác \(HK \subset \left( {SAM} \right) \Rightarrow HK \bot BC\).

Nên \(HK \bot \left( {SBC} \right)\), do đó đáp án B đúng.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hàm số \(f\left( x \right) = \frac{{{x^2} + 2}}{{x - 2}}\) . Giá trị \(f'\left( 1 \right)\) bằng

Xem lời giải » 3 năm trước 61
Câu 2: Trắc nghiệm

Cho hàm số \(y = {x^3} + 3{x^2} - 1\) có đồ thị \(\left( C \right)\). Viết phương trình tiếp tuyến của \(\left( C \right)\) tại điểm M có hoành độ bằng \( - 1\)

Xem lời giải » 3 năm trước 60
Câu 3: Trắc nghiệm

Cho hàm số \(y = {x^4} - 2{x^2} - 1\) có đồ thị \(\left( C \right)\). Số tiếp tuyến song song với trục hoành của đồ thị \(\left( C \right)\) là

Xem lời giải » 3 năm trước 58
Câu 4: Trắc nghiệm

Giới hạn \(\mathop {\lim }\limits_{x \to 2018} \frac{{{x^2} - 2019x + 2018}}{{x - 2018}}\)  bằng

Xem lời giải » 3 năm trước 49
Câu 5: Trắc nghiệm

Giới hạn \(\mathop {\lim }\limits_{x \to {1^ + }} \frac{{2x - \sqrt {x + 3} }}{{x + 1}}\) bằng:

Xem lời giải » 3 năm trước 45
Câu 6: Trắc nghiệm

Tính \(\mathop {\lim }\limits_{x \to {1^ - }} \frac{{{x^2} + 3x - 4}}{{\left| {x - 1} \right|}}\).

Xem lời giải » 3 năm trước 44
Câu 7: Trắc nghiệm

Hàm số  \(y = f(x) = \frac{{{x^3} + x\cos x + \sin x}}{{2\sin x + 3}}\) liên tục trên:

Xem lời giải » 3 năm trước 44
Câu 8: Trắc nghiệm

Cho tứ diện ABCD, gọi G là trọng tâm của tam giác BCD. Mệnh đề nào dưới đây đúng?

Xem lời giải » 3 năm trước 43
Câu 9: Trắc nghiệm

Giá trị của giới hạn \(\lim \frac{{\sqrt {9{n^2} - n}  - \sqrt {n + 2} }}{{3n - 2}}\) là:

Xem lời giải » 3 năm trước 43
Câu 10: Trắc nghiệm

Giới hạn \(\mathop {\lim }\limits_{x \to  - \infty } \left( {{x^2} - 3x + 1} \right)\) bằng

Xem lời giải » 3 năm trước 42
Câu 11: Trắc nghiệm

Một chất điểm chuyển động theo phương trình \(S = {t^3} + 5{t^2} - 5\), trong đó \(t > 0\), t được tính bằng giây (s) và S được tính bằng mét (m). Tính vận tốc của chất điểm tại thời điểm \(t = 2\) (giây).

Xem lời giải » 3 năm trước 42
Câu 12: Trắc nghiệm

Trong bốn giới hạn sau đây, giới hạn nào bằng \(2?\)

Xem lời giải » 3 năm trước 42
Câu 13: Trắc nghiệm

Cho hình lăng trụ tam giác đều \(ABC.A'B'C'\) có \(AB = a\), cạnh bên \(AA' = \frac{{3a}}{2}\) (tham khảo hình vẽ bên). Tính khoảng cách từ điểm \(C'\) đến mặt phẳng \(\left( {CA'B'} \right)\).

Xem lời giải » 3 năm trước 41
Câu 14: Trắc nghiệm

Tính \(\mathop {\lim }\limits_{x \to 4} \frac{{x + 5}}{{x - 1}}\).

Xem lời giải » 3 năm trước 41
Câu 15: Trắc nghiệm

Trong các mệnh đề sau, mệnh đề nào sai?

Xem lời giải » 3 năm trước 40

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »