Đề thi HK1 môn Toán 12 năm 2021-2022 - Trường THPT Lý Thường Kiệt

Đề thi HK1 môn Toán 12 năm 2021-2022 - Trường THPT Lý Thường Kiệt

  • Hocon247

  • 40 câu hỏi

  • 60 phút

  • 91 lượt thi

  • Trung bình

Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com

Câu 1: Trắc nghiệm ID: 247887

 Đường cong trong hình vẽ bên là đồ thị của một hàm số trong bốn hàm số được liệt kê dưới đây. Hỏi hàm số đó là hàm số nào ?

Xem đáp án

Dựa vào đồ thị hàm số ta thấy nét cuối của hàm số đi lên \( \Rightarrow a > 0.\)

\( \Rightarrow \) loại đáp án C và D.

Đồ thị hàm đi qua các điểm \(\left( { - 1;\,\,4} \right),\,\,\left( {1;\,\,4} \right).\)

Thay điểm \(\left( {1;\,\,4} \right)\) vào hàm số \(y = \dfrac{1}{2}{x^4} - {x^2} - 3\) ta được:

\(4 = \dfrac{1}{2}.1 - 1 - 3 \Leftrightarrow 4 =  - \dfrac{7}{2}\) (vô lý)

\( \Rightarrow \) loại đáp án A.

Chọn  B.

Câu 2: Trắc nghiệm ID: 247888

Cho hàm số \(f\left( x \right) = {\log _{\dfrac{1}{3}}}\left( {1 - {x^2}} \right).\) Biết tập nghiệm của bất phương trình \(f'\left( x \right) > 0\) là khoảng \(\left( {a;b} \right).\) Tính \(S = a + 2b.\)

Xem đáp án

Xét hàm số: \(f\left( x \right) = {\log _{\dfrac{1}{3}}}\left( {1 - {x^2}} \right)\)

TXĐ: \(D = \left( { - 1;\,\,1} \right).\)

Ta có: \(f'\left( x \right) = \dfrac{{ - 2x}}{{1 - {x^2}}}.\ln \dfrac{1}{3} = \dfrac{{2x}}{{{x^2} - 1}}\ln \dfrac{1}{3}.\)

\(\begin{array}{l} \Rightarrow f'\left( x \right) > 0 \Leftrightarrow \dfrac{{2x}}{{{x^2} - 1}}\ln \dfrac{1}{3} > 0\\ \Leftrightarrow \dfrac{{2x}}{{{x^2} - 1}} < 0\,\,\,\,\,\left( {do\,\,\,\ln \dfrac{1}{3} < 0} \right)\\ \Leftrightarrow 2x < 0\,\,\,\,\,\left( {do\,\,\,\,{x^2} - 1 > 0} \right)\\ \Leftrightarrow x < 0.\end{array}\) 

Kết hợp với điều kiện ta được nghiệm của bất phương trình là: \( - 1 < x < 0.\)

\( \Rightarrow {S_0} = \left( { - 1;\,\,0} \right) \Rightarrow \left\{ \begin{array}{l}a =  - 1\\b = 0\end{array} \right. \Rightarrow S = a + 2b =  - 1 + 2.0 =  - 1.\)

Chọn  A.

Câu 3: Trắc nghiệm ID: 247889

Số mặt phẳng đối xứng của một hình hộp chữ nhật có chiều dài, chiều rộng, chiều cao đôi một khác nhau là 

Xem đáp án

 

Hình hộp chữ nhật có độ dài chiều dài, chiều rộng, chiều cao đôi một khác nhau có 3 mặt phẳng đối xứng.

Chọn C.

Câu 4: Trắc nghiệm ID: 247890

Cho \(a,b\) là hai số thực dương. Tìm \(x\) biết \({\log _3}x = 3{\log _3}a - 2{\log _{\frac{1}{3}}}b.\)

Xem đáp án

\(\begin{array}{l}\,\,\,\,\,\,\,{\log _3}x = 3{\log _3}a - 2{\log _{\dfrac{1}{3}}}b\\ \Leftrightarrow {\log _3}x = {\log _3}{a^3} + {\log _3}{b^2}\\ \Leftrightarrow {\log _3}x = {\log _3}{a^3}{b^2}\\ \Leftrightarrow x = {a^3}{b^2}.\end{array}\)

Chọn  A.

Câu 5: Trắc nghiệm ID: 247891

Tính giá trị nhỏ nhất của hàm số \(y = \sqrt {4 - {x^2}} \) trên đoạn \(\left[ { - 1;1} \right].\) 

Xem đáp án

Xét hàm số \(y = \sqrt {4 - {x^2}} \) trên \(\left[ { - 1;\,\,1} \right].\)

Ta có: \(y' = \dfrac{{ - 2x}}{{2\sqrt {4 - {x^2}} }} = \dfrac{{ - x}}{{\sqrt {4 - {x^2}} }}\)

\(\begin{array}{l} \Rightarrow y' = 0 \Leftrightarrow x = 0 \in \left[ { - 1;\,\,1} \right]\\ \Rightarrow \left\{ \begin{array}{l}y\left( { - 1} \right) = \sqrt 3 \\y\left( 0 \right) = 4\\y\left( 1 \right) = \sqrt 3 \end{array} \right. \Rightarrow \mathop {Min}\limits_{\left[ { - 1;\,\,1} \right]} y = \sqrt 3 \,\,\,\,khi\,\,\,\,\left[ \begin{array}{l}x =  - 1\\x = 1\end{array} \right..\end{array}\)

Chọn  A.

Câu 6: Trắc nghiệm ID: 247892

Cho \(x\) là số thực dương và biểu thức \(P = \sqrt[3]{{{x^2}\sqrt[4]{{x\sqrt x }}}}.\) Viết biểu thức \(P\) dưới dạng lũy thừa của một số với số mũ hữu tỉ.

Xem đáp án

\(\begin{array}{l}P = \sqrt[3]{{{x^2}\sqrt[4]{{x\sqrt x }}}} = \sqrt[3]{{{x^2}\sqrt[4]{{x.{x^{\dfrac{1}{2}}}}}}} = \sqrt[3]{{{x^2}\sqrt[4]{{{x^{\dfrac{3}{2}}}}}}}\\ = \sqrt[3]{{{x^2}.{x^{\dfrac{3}{8}}}}} = \sqrt[3]{{{x^{\dfrac{{19}}{8}}}}} = {x^{\dfrac{{19}}{{24}}}}.\end{array}\)

Chọn  C.

Câu 7: Trắc nghiệm ID: 247893

Cho hình chóp S.ABCD có đáy là hình vuông cạnh a, cạnh SA vuông góc với mặt phẳng (ABCD), góc giữa cạnh SD và mặt phẳng (ABCD) bằng \(60^\circ \). Thể tích của khối chóp đã cho bằng

Xem đáp án

Ta có: \(SA \bot \left( {ABCD} \right) \Rightarrow AD\) là hình chiếu của \(SD\) trên \(\left( {ABCD} \right).\)

\(\begin{array}{l} \Rightarrow \angle \left( {SD,\,\,\,\left( {ABCD} \right)} \right) = \angle SDA = {60^0}.\\ \Rightarrow SA = AD.\tan {60^0} = a\sqrt 3 .\\ \Rightarrow {V_{SABCD}} = \dfrac{1}{3}SA.{S_{ABCD}} = \dfrac{1}{3}.a\sqrt 3 .{a^2} = \dfrac{{{a^3}\sqrt 3 }}{3}.\end{array}\)

Chọn  C.

Câu 8: Trắc nghiệm ID: 247894

Giá trị cực tiểu \({y_{c{\rm{r}}}}\) của hàm số \(y = {x^3} - 3{{\rm{x}}^2} + 7\) là

Xem đáp án

Xét hàm số:\(y = {x^3} - 3{x^2} + 7\)  ta có:

\(y' = 3{x^2} - 6x \Rightarrow y'' = 6x - 6\)

Gọi \(x = {x_0}\) là điểm cực tiểu của hàm số. Khi đó ta có:

\(\begin{array}{l}\left\{ \begin{array}{l}y'\left( {{x_0}} \right) = 0\\y''\left( {{x_0}} \right) > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}3x_0^2 - 6{x_0} = 0\\6{x_0} - 6 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}{x_0} = 0\\{x_0} = 2\end{array} \right.\\{x_0} > 1\end{array} \right. \Leftrightarrow {x_0} = 2.\\ \Rightarrow {y_{CT}} = y\left( 2 \right) = {2^3} - {3.2^2} + 7 = 3.\end{array}\)

Chọn  B.

Câu 9: Trắc nghiệm ID: 247895

Biết rằng năm 2009 dân số Việt Nam là 85.847.000 người và tỉ lệ tăng dân số năm đó là 1,2%. Cho biết sự tăng dân số được ước tính theo công thức \(S = A{e^{Nr}}\) (A là dân số năm lấy làm mốc tính; S là dân số sau N năm; r là tỉ lệ tăng dân số hàng năm). Nếu cứ tăng dân số với tỉ lệ như vậy thì sau bao nhiêu năm nữa dân số nước ta ở mức 120 triệu người?

Xem đáp án

Theo đề bài ta có: \(S = A{e^{Nr}}\)

Khi dân số nước ta ở mức \(120\) triệu người là:

\(\begin{array}{l}120000000 = 85847000.{e^{N.1,2\% }}\\ \Leftrightarrow {e^{N.1,2\% }} \approx 1,398\\ \Leftrightarrow N.1,2\%  = \ln 1,398\\ \Leftrightarrow N \approx 27,9\end{array}\)

Chọn  C.

Câu 10: Trắc nghiệm ID: 247896

Cho \({\left( {\pi  - 2} \right)^m} > {\left( {\pi  - 2} \right)^n}\) với m n , là các số nguyên. Khẳng định đúng là

Xem đáp án

Ta có: \({\left( {\pi  - 2} \right)^m} > {\left( {\pi  - 2} \right)^n} \Rightarrow m > n\) vì \(\pi  - 2 > 1.\) 

Chọn  A.

Câu 11: Trắc nghiệm ID: 247897

Cho hàm số \(y = \dfrac{1}{3}{x^3} - {x^2} + (m - 1)x + 2019\). Giá trị nhỏ nhất của tham số m để hàm số đồng biến trên tập xác định là

Xem đáp án

Xét hàm số \(y = \dfrac{1}{3}{x^3} - {x^2} + \left( {m - 1} \right)x + 2019\) trên \(\mathbb{R}\) ta có: \(y' = {x^2} - 2x + m - 1.\)

Hàm số đã cho đồng biến trên TXĐ\( \Leftrightarrow y' \ge 0\,\,\,\forall x \in \mathbb{R}\)

\(\begin{array}{l} \Leftrightarrow {x^2} - 2x + m - 1 \ge 0\\ \Leftrightarrow {x^2} - 2x - 1 \ge  - m\\ \Leftrightarrow {x^2} - 2x + 1 - 2 \ge  - m\\ \Leftrightarrow {\left( {x - 1} \right)^2} \ge  - m + 2.\\ \Rightarrow  - m + 2 \le \mathop {Min}\limits_\mathbb{R} \,\,{\left( {x - 1} \right)^2} \Leftrightarrow  - m + 2 \le 0 \Leftrightarrow m \ge 2.\end{array}\)

Vậy \(m = 2\) là giá trị cần tìm.

Chọn  A.

Câu 12: Trắc nghiệm ID: 247898

Cho hàm số \(y = {x^3} - 3{{\rm{x}}^2}\) . Có bao nhiêu tiếp tuyến của đồ thị hàm số song song với trục hoành?

Xem đáp án

Xét hàm số: \(y = {x^3} - 3{x^2}\) có \(y' = 3{x^2} - 6x\)

Gọi \(M\left( {{x_0};\,\,{y_0}} \right)\) là một điểm thuộc đồ thị hàm số.

\( \Rightarrow \) Phương trình tiếp tuyến của đồ thị hàm số tại \(M\) là:

\(\begin{array}{l}d:\,\,\,y = y'\left( {{x_0}} \right)\left( {x - {x_0}} \right) + {y_0}\\ \Leftrightarrow y = \left( {3x_0^2 - 6{x_0}} \right)\left( {x - {x_0}} \right) + x_0^3 - 3x_0^2\\ \Leftrightarrow y = \left( {3x_0^2 - 6{x_0}} \right)x - 3x_0^3 + 6x_0^2 + x_0^3 - 3x_0^2\\ \Leftrightarrow y = \left( {3x_0^2 - 6{x_0}} \right)x - 2x_0^3 + 3x_0^2\\ \Rightarrow d//Ox:\,\,y = 0 \Leftrightarrow \left\{ \begin{array}{l}3x_0^2 - 6{x_0} = 0\\ - 2x_0^3 + 3x_0^2 \ne 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}{x_0} = 0\\{x_0} = 2\end{array} \right.\\{x_0} \ne 0\\{x_0} \ne \dfrac{3}{2}\end{array} \right. \Leftrightarrow {x_0} = 2.\end{array}\)

Vậy có 1 tiếp tuyến thỏa mãn bài toán.

Chọn  D.

Câu 13: Trắc nghiệm ID: 247899

Tìm số giao điểm của đồ thị hàm số \(y = \left( {1 - 2{\rm{x}}} \right)\left( {2{{\rm{x}}^2} - 5{\rm{x}} + 2} \right)\) với trục hoành.

Xem đáp án

Ta có phương trình hoành độ giao điểm của đồ thị hàm số với trục hoành là:

\(\begin{array}{l}\left( {1 - 2x} \right)\left( {2{x^2} - 5x + 2} \right) = 0\\ \Leftrightarrow \left[ \begin{array}{l}1 - 2x = 0\\2{x^2} - 5x + 2 = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \dfrac{1}{2}\\x = 2\end{array} \right..\end{array}\)

Vậy đồ thị hàm số đã cho cắt trục hoành tại 2 điểm phân biệt.

Chọn  A.

Câu 14: Trắc nghiệm ID: 247900

Hình hai mươi mặt đều có mỗi đỉnh là đỉnh chung của số cạnh là

Xem đáp án

Khối đa diện có 20 mặt đều, mỗi đỉnh là đỉnh chung của 5 cạnh.

Chọn  A.

Câu 15: Trắc nghiệm ID: 247901

Cho hình lăng trụ ABCD. A’B’C’D’ có đáy là hình vuông cạnh a, hình chiếu vuông góc của A’ lên mặt phẳng (ABCD) trùng với trung điểm của cạnh AB, góc giữa A’C và mặt phẳng (ABCD) bằng 450 . Thể tích của khối lăng trụ đã cho bằng

Xem đáp án

Gọi \(H\) là trung điểm của \(AB.\)

Khi đó ta có: \(A'H \bot \left( {ABCD} \right).\)

\( \Rightarrow H'C\) là hình chiếu của \(A'C\) trên \(\left( {ABCD} \right)\)

\( \Rightarrow \angle \left( {A'C,\,\,\left( {ABCD} \right)} \right) = \angle \left( {A'C,\,HC} \right) = \angle HCA' = {45^0}\)

Áp  dụng định lý Pitago cho \(\Delta HBC\) vuông tại \(B\) ta có:

\(\begin{array}{l}HC = \sqrt {H{B^2} + B{C^2}}  = \sqrt {{{\left( {\dfrac{a}{2}} \right)}^2} + {a^2}}  = \dfrac{{a\sqrt 5 }}{2}.\\ \Rightarrow A'H = HC.\tan {45^0} = HC = \dfrac{{a\sqrt 5 }}{2}.\\ \Rightarrow {V_{ABCD.A'B'C'D'}} = A'H.{S_{ABCD}} = \dfrac{{a\sqrt 5 }}{2}.{a^2} = \dfrac{{{a^3}\sqrt 5 }}{2}.\end{array}\)

Chọn  A.

Câu 16: Trắc nghiệm ID: 247902

Hình đa diện có các đỉnh là trung điểm tất cả các cạnh của một tứ diện đều là

Xem đáp án

Hình đa diện có tất cả các đỉnh là trung điểm của các cạnh của một tứ diện đều là bát diện đều.

 

Chọn  A.

Câu 17: Trắc nghiệm ID: 247903

Cho \({\log _2}3 = a;{\log _3}7 = b\) Biểu diễn \(P = {\log _{21}}126\) theo a, b.

Xem đáp án

Ta có: \({\log _2}7 = {\log _2}3.{\log _3}7 = ab.\)

\(\begin{array}{l}P = {\log _{21}}126 = {\log _{21}}\left( {21.6} \right) = {\log _{21}}21 + {\log _{21}}6\\\,\,\,\,\, = 1 + {\log _{21}}2 + {\log _{21}}3 = 1 + \dfrac{1}{{{{\log }_2}21}} + \dfrac{1}{{{{\log }_3}21}}\\\,\,\,\,\, = 1 + \dfrac{1}{{{{\log }_2}3 + {{\log }_2}7}} + \dfrac{1}{{{{\log }_3}3 + {{\log }_3}7}}\\\,\,\,\,\, = 1 + \dfrac{1}{{a + ab}} + \dfrac{1}{{1 + b}} = \dfrac{{a + ab + 1 + a}}{{a + ab}}\\\,\,\,\,\, = \dfrac{{ab + 2a + 1}}{{a + ab}}.\end{array}\)

Chọn  A.

Câu 18: Trắc nghiệm ID: 247904

Trong các khẳng định sau, tìm khẳng định sai.

Xem đáp án

+) Xét đáp án A: Hàm số \(y = \log x\) có TXĐ: \(D = \left( {0; + \infty } \right)\)

\( \Rightarrow \) Đáp án A sai.

Chọn  A.

Câu 19: Trắc nghiệm ID: 247905

Cho hàm số \(\dfrac{{2{\rm{x}} + 1}}{{x - 2}}\) . Tìm khẳng định sai.

Xem đáp án

Ta có: \(y = \dfrac{{2x + 1}}{{x - 2}}\)

TXĐ: \(D = \mathbb{R}\backslash \left\{ 2 \right\}.\)

Có: \(y' = \dfrac{{ - 2.2 - 1}}{{{{\left( {x - 2} \right)}^2}}} = \dfrac{{ - 5}}{{{{\left( {x - 2} \right)}^2}}} < 0\,\,\forall x \in D\)

\( \Rightarrow \) Hàm số nghịch biến trên \(\left( { - \infty ;\,\,2} \right)\) và \(\left( {2; + \infty } \right).\)

\( \Rightarrow \) Đáp án B đúng.

Đồ thị hàm số có TCĐ: \(x = 2\) và TCN: \(y = 2.\)

\( \Rightarrow \) Đáp án A đúng.

Hàm số bậc nhất trên bậc nhất không có cực trị.

\( \Rightarrow \) Đáp án D đúng.

Chọn  C.

Câu 20: Trắc nghiệm ID: 247906

Cho hình chóp đều S.ABC có cạnh đáy bằng a, cạnh bên bằng 2a. Gọi M là trung điểm của SA. Thể tích của khối chóp M.ABC bằng

Xem đáp án

Ta có:\({S_{ABC}} = \dfrac{{{a^2}\sqrt 3 }}{4}.\)

\(AO = \dfrac{2}{3}AD = \dfrac{2}{3}.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{a\sqrt 3 }}{3}.\)

Áp dụng định lý Pitago cho \(\Delta SAO\) vuông tại \(O\) ta có:

\(SO = \sqrt {S{A^2} - A{O^2}}  = \sqrt {4{a^2} - {{\left( {\dfrac{{a\sqrt 3 }}{3}} \right)}^2}}  = \dfrac{{a\sqrt {33} }}{3}.\)

Gọi \(I\) là hình chiếu vuông góc của \(M\) trên \(AO.\)

Khi đó ta có: \(MI = \dfrac{1}{2}SO\) (định lý Ta-let).

\(\begin{array}{l} \Rightarrow MI = \dfrac{{a\sqrt {35} }}{6}.\\ \Rightarrow {V_{MABC}} = \dfrac{1}{3}MI.{S_{ABC}} = \dfrac{1}{3}.\dfrac{{a\sqrt {33} }}{6}.\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^3}\sqrt {11} }}{{24}}.\end{array}\)

Chọn  D.

Câu 21: Trắc nghiệm ID: 247907

Cho hàm số \(y = \dfrac{{ax + b}}{{cx + d}}\) có đồ thị như hình vẽ bên.

Khẳng định nào dưới đây là khẳng định đúng?

Xem đáp án

Dựa vào đồ thị hàm số ta thấy hàm số có TCĐ là: \(x = 1 \Rightarrow  - \dfrac{d}{c} = 1 \Rightarrow d =  - c \Rightarrow dc < 0.\)

Đồ thị hàm số có TCN là: \(y = 1 \Rightarrow \dfrac{a}{c} = 1 \Rightarrow a = c \Rightarrow ac > 0 \Rightarrow \) loại đáp án D.

Đồ thị hàm số cắt trục tung tại điểm có tung độ bằng \(2 \Rightarrow \dfrac{b}{d} = 2 \Leftrightarrow b = 2d \Rightarrow bd > 0 \Rightarrow \) loại đáp án C.

Ta có: \(\left\{ \begin{array}{l}dc < 0\\ac > 0\\bd > 0\end{array} \right. \Rightarrow \left\{ \begin{array}{l}ad < 0\\bd > 0\end{array} \right. \Rightarrow ab < 0.\)

Chọn  A.

Câu 22: Trắc nghiệm ID: 247908

Tìm tập xác định của hàm số \(y = \log \left( {{x^3} - 3x + 2} \right)\)

Xem đáp án

Hàm số \(y = \log \left( {{x^3} - 3x + 2} \right)\) xác định \( \Leftrightarrow {x^3} - 3x + 2 > 0\) 

\( \Leftrightarrow {\left( {x - 1} \right)^2}\left( {x + 2} \right) > 0 \Leftrightarrow \left\{ \begin{array}{l}x - 1 \ne 0\\x + 2 > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x >  - 2\\x \ne 1\end{array} \right..\)

Chọn  B.

Câu 23: Trắc nghiệm ID: 247909

Đồ thị hàm số \(y = \dfrac{{x - 1}}{{\sqrt {3{{\rm{x}}^2} + 1} }}\)  có bao nhiêu đường tiệm cận ngang?

Xem đáp án

Ta có: \(\mathop {\lim }\limits_{x \to  + \infty } y = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{x - 1}}{{\sqrt {3{x^2} + 1} }} = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{1 - \dfrac{1}{x}}}{{\sqrt {3 + \dfrac{1}{{{x^2}}}} }} = \dfrac{1}{{\sqrt 3 }}\)

\( \Rightarrow y = \dfrac{1}{{\sqrt 3 }}\) là đường TCN của đồ thị hàm số.

 \(\mathop {\lim }\limits_{x \to  - \infty } y = \mathop {\lim }\limits_{x \to  - \infty } \dfrac{{x - 1}}{{\sqrt {3{x^2} + 1} }} = \mathop {\lim }\limits_{x \to  + \infty } \dfrac{{1 - \dfrac{1}{x}}}{{ - \sqrt {3 + \dfrac{1}{{{x^2}}}} }} =  - \dfrac{1}{{\sqrt 3 }}\)

\( \Rightarrow y =  - \dfrac{1}{{\sqrt 3 }}\) là đường TCN của đồ thị hàm số.

Vậy đồ thị hàm số có 2 đường TCN.

Chọn  C.

Câu 24: Trắc nghiệm ID: 247910

Trong không gian cho hai điểm phân biệt A, B cố định. Tập hợp các điểm M thỏa mãn đẳng thức \(\overrightarrow {MA} .\overrightarrow {MB}  = 0\) là

Xem đáp án

Ta có: \(\overrightarrow {MA} .\overrightarrow {MB}  = 0\)

Gọi \(I\) là trung điểm của \(AB.\)

\(\begin{array}{l} \Rightarrow \overrightarrow {MA} .\overrightarrow {MB}  = 0 \Leftrightarrow \left( {\overrightarrow {MI}  + \overrightarrow {IA} } \right)\left( {\overrightarrow {MI}  + \overrightarrow {IB} } \right) = 0\\ \Leftrightarrow {\overrightarrow {MI} ^2} + \overrightarrow {MI} .\overrightarrow {IB}  + \overrightarrow {IA} .\overrightarrow {MI}  + \overrightarrow {IA} .\overrightarrow {IB}  = 0\\ \Leftrightarrow M{I^2} + \overrightarrow {MI} \left( {\overrightarrow {IB}  + \overrightarrow {IA} } \right) + IA.IB.\cos \left( {\overrightarrow {IA} ,\,\overrightarrow {IB} } \right) = 0\\ \Leftrightarrow M{I^2} + I{A^2}\cos {180^0} = 0\\ \Leftrightarrow M{I^2} = I{A^2}\\ \Leftrightarrow MI = IA\end{array}\)

Vậy tập hợp điểm \(M\) thỏa mãn bài toán là mặt cầu tâm \(I,\) đường kính \(AB.\)

Chọn  C.

Câu 25: Trắc nghiệm ID: 247911

Cho \(0 < a \ne 1;0 < b \ne 1\) và x, y là hai số thực dương. Mệnh đề nào dưới đây đúng?

Xem đáp án

+) Xét đáp án A: \({\log _a}\dfrac{x}{y} = {\log _a}x - {\log _a}y \Rightarrow \) đáp án A sai.

+) Xét đáp án B: \(\log _a^2\left( {xy} \right) = {\left( {{{\log }_a}x + {{\log }_a}y} \right)^2} = \log _a^2x + 2{\log _a}x.{\log _a}y + \log _a^2y \Rightarrow \) đáp án B sai.

+) Xét đáp án C: \({\log _a}\dfrac{1}{x} = {\log _a}1 - {\log _a}x =  - {\log _a}x \Rightarrow \) đáp án C sai.

+) Xét đáp án D: \({\log _b}x = {\log _a}{x^{{{\log }_b}a}} \Leftrightarrow {\log _b}x = {\log _b}a.{\log _a}x \Leftrightarrow {\log _b}x = {\log _b}x\) luôn đúng \( \Rightarrow \) đáp án D đúng.

Chọn D.

Câu 26: Trắc nghiệm ID: 247912

Tính đạo hàm của hàm số \(y = {2^{{x^2} - \sin x + 2}}\) 

Xem đáp án

Ta có: \(y = {2^{{x^2} - \sin x + 2}}\)

\(\begin{array}{l} \Rightarrow y' = \left( {{x^2} - \sin x + 2} \right)'{2^{{x^2} - \sin x + 2}}\ln 2\\\,\,\,\,\,\,\,\,\,\,\,\,\,\, = \left( {2x - \cos x} \right){.2^{{x^2} - \sin x + 2}}\ln 2.\end{array}\)

Chọn  A.

Câu 27: Trắc nghiệm ID: 247913

Thể tích của khối cầu đường kính 3R bằng

Xem đáp án

Bán kính khối cầu là: \(r = \dfrac{{3R}}{2}.\)

Thể tích của khối cầu là:\(V = \dfrac{4}{3}\pi {r^3} = \dfrac{4}{3}\pi {\left( {\dfrac{{3R}}{2}} \right)^3} = \dfrac{{9\pi {R^3}}}{2}.\)

Chọn  C.

Câu 28: Trắc nghiệm ID: 247914

Cho hình chóp S.ABC có đáy là tam giác vuông cân tại A, cạnh SA vuông góc với mặt phẳng (ABC), BC = a, SA = AB. Thể tích của khối chóp đã cho bằng

Xem đáp án

\(\Delta ABC\) vuông cân tại \(A\) có \(BC = a\)

\(\begin{array}{l} \Rightarrow AB = AC = \dfrac{a}{{\sqrt 2 }}.\\ \Rightarrow SA = AB = \dfrac{a}{{\sqrt 2 }}.\\ \Rightarrow {V_{SABC}} = \dfrac{1}{3}SA.{S_{ABC}} = \dfrac{1}{3}.SA.\dfrac{1}{2}AB.AC\\ = \dfrac{1}{6}.\dfrac{a}{{\sqrt 2 }}.\dfrac{a}{{\sqrt 2 }}.\dfrac{a}{{\sqrt 2 }} = \dfrac{{{a^3}}}{{12\sqrt 2 }} = \dfrac{{{a^3}\sqrt 2 }}{{24}}.\end{array}\)

Chọn  A.

Câu 29: Trắc nghiệm ID: 247915

Tìm tất cả các giá trị thực của tham số m sao cho hàm số \(y = 4{{\rm{x}}^3} + m{{\rm{x}}^2} - 12{\rm{x}} + 5\) đạt cực tiểu tại điểm x = -2.

Xem đáp án

Ta có:\(y = 4{x^3} + m{x^2} - 12x + 5\)

\(\begin{array}{l} \Rightarrow y' = 12{x^2} + 2mx - 12\\ \Rightarrow y'' = 24x + 2m.\end{array}\)

Hàm số đã cho nhận điểm \(x =  - 2\) làm điểm cực tiểu \( \Leftrightarrow \left\{ \begin{array}{l}y'\left( { - 2} \right) = 0\\y''\left( { - 2} \right) > 0\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}12.{\left( { - 2} \right)^2} + 2m\left( { - 2} \right) - 12 = 0\\24.\left( { - 2} \right) + 2m > 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}m = 9\\m > 24\end{array} \right. \Leftrightarrow m \in \emptyset .\)

Chọn  A.

Câu 30: Trắc nghiệm ID: 247916

Cho hàm số \(y =  - {x^3} + 3{{\rm{x}}^2} + 2\). Tìm phương trình tiếp tuyến của đồ thị hàm số tại tâm đối xứng của đồ thị.

Xem đáp án

Ta có: \(y = \dfrac{{2x + 1}}{{x - 1}}.\)

TXĐ:\(D = \mathbb{R}\backslash \left\{ 1 \right\}.\)

\( \Rightarrow y' = \dfrac{{2.\left( { - 1} \right) - 1}}{{{{\left( {x - 1} \right)}^2}}} = \dfrac{{ - 3}}{{{{\left( {x - 1} \right)}^2}}} < 0\,\,\forall x \in D\)

\( \Rightarrow \)  Hàm số đã cho nghịch biến trên \(\left( { - \infty ;\,\,1} \right)\) và \(\left( {1; + \infty } \right).\)

Chọn A.

Câu 31: Trắc nghiệm ID: 247917

Cho hàm số \(y = \dfrac{{2{\rm{x}} + 1}}{{x - 1}}\).  Khẳng định nào sau đây là đúng?

Xem đáp án

Xét hàm số \(y = \dfrac{{2x + 1}}{{x - 1}}\) có TXĐ \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).

Ta có: \(y' = \dfrac{{2.\left( { - 1} \right) - 1.1}}{{{{\left( {x - 1} \right)}^2}}} = \dfrac{{ - 3}}{{{{\left( {x - 1} \right)}^2}}} < 0\,\,\forall x \in D\).

Vậy hàm số đã cho nghịch biến trên \(\left( { - \infty ;1} \right)\) và \(\left( {1; + \infty } \right)\).

Chọn A.

Chú ý: Không kết luận hàm số nghịch biến trên \(\left( { - \infty ;1} \right) \cup \left( {1; + \infty } \right)\) hay nghịch biến trên \(\mathbb{R}\backslash \left\{ 1 \right\}\).

Câu 32: Trắc nghiệm ID: 247918

Trong các hình chóp tứ giác sau, hình chóp nào có mặt cầu ngoại tiếp

Xem đáp án

Trong các hình: Hình thang vuông, hình thang cân, hình bình hành, hình thang, chỉ có duy nhất hình thang cân là tứ giác có đường tròn nội tiếp.

Vậy trong 4 đáp án chỉ có hình chóp có đáy là hình thang cân có mặt cầu ngoại tiếp.

Chọn B.

Câu 33: Trắc nghiệm ID: 247919

Cho a, b là các số thực dương, m là một số nguyên và n là một số nguyên dương. Tìm khẳng định sai.

Xem đáp án

Ta có: \(\sqrt[m]{{{a^n}}} = {a^{\dfrac{n}{m}}}\) nên đáp án B sai.

Chọn B.

Câu 34: Trắc nghiệm ID: 247920

Đồ thị hàm số nào sau đây có tiệm cận đứng là đường thẳng x = -2 ?

Xem đáp án

Xét đáp án C và D, hai hàm số đều có TXĐ \(D = \mathbb{R}\) nên không có tiệm cận đứng.

Xét đáp án B: \(y = \dfrac{{x + 2}}{{{x^2} - 4}} = \dfrac{{x + 2}}{{\left( {x + 2} \right)\left( {x - 2} \right)}} = \dfrac{1}{{x - 2}}\)

\( \Rightarrow \mathop {\lim }\limits_{x \to  - 2} y = \dfrac{1}{{ - 2 - 2}} =  - \dfrac{1}{4} \ne  \pm \infty \), do đó đồ thị hàm số không có tiệm cận đứng \(x =  - 2\).

Xét đáp án A ta có: \(y = \dfrac{{x + 1}}{{{x^2} - 4}}\).

Có \(\mathop {\lim }\limits_{x \to {{\left( { - 2} \right)}^ + }} y =  + \infty  \Rightarrow \) Đồ thị hàm số nhận \(x =  - 2\) là đường tiệm cận đứng.

Chọn A.

Câu 35: Trắc nghiệm ID: 247921

Cho hình chóp đều S.ABCD có cạnh đáy bằng 4cm và chiều cao bằng 2cm . Bán kính mặt cầu ngoại tiếp hình chóp đã cho bằng

Xem đáp án

Hình chóp đều có chiều cao \(h = 2cm\), cạnh bên \(a = 4cm\) có bán kính mặt cầu ngoại tiếp là:

\(R = \dfrac{{{a^2}}}{{2h}} = \dfrac{{{4^2}}}{{2.2}} = 4\,\,\left( {cm} \right)\).

Chọn D.

Câu 36: Trắc nghiệm ID: 247922

Cho khối tứ diện ABCD có thể tích bằng V. Gọi M là trung điểm cạnh AB, N thuộc cạnh AC sao cho AN = 2 NC, P thuộc cạnh AD sao cho PD = 3 AP. Thể tích của khối đa diện MNP.BCD tính theo V là

Xem đáp án

 

Ta có: \(\dfrac{{{V_{AMNP}}}}{{{V_{ABCD}}}} = \dfrac{{AM}}{{AB}}.\dfrac{{AN}}{{AC}}.\dfrac{{AP}}{{AD}} = \dfrac{1}{2}.\dfrac{2}{3}.\dfrac{1}{4} = \dfrac{1}{{12}} \Rightarrow {V_{AMNP}} = \dfrac{1}{{12}}{V_{ABCD}}\).

Mà \({V_{ABCD}} = {V_{AMNP}} + {V_{MNP.BCD}} \Rightarrow {V_{ABCD}} = \dfrac{1}{{12}}{V_{ABCD}} + {V_{MNP.BCD}}\).

\( \Rightarrow {V_{MNP.BCD}} = \dfrac{{11}}{{12}}{V_{ABCD}} \Rightarrow {V_{MNP.BCD}} = \dfrac{{11}}{{12}}V\)

Chọn D.

Câu 37: Trắc nghiệm ID: 247923

Cho hàm số y = f(x) xác định và liên tục trên \(\mathbb{R}\) và có bảng biến thiên như hình vẽ.

 

Khẳng định nào sau đây đúng?

Xem đáp án

Dựa vào BBT ta thấy:

Hàm số có giá trị cực tiểu bằng \( - 1\), đạt tại \(x = 1\). Do đó đáp án A đúng, đáp án C sai.

Hàm số có \({x_{CT}} = 1,\,\,{x_{CD}} = 0\) nên đáp án D sai.

Do \(\mathop {\lim }\limits_{x \to  - \infty } y =  - \infty \) nên đáp án B sai.

Chọn A.

Câu 38: Trắc nghiệm ID: 247924

Cho hàm số\(y = {x^4} - 2{{\rm{x}}^2} + 1\). Tìm khẳng định sai ?

Xem đáp án

Hàm số \(y = {x^4} - 2{x^2} + 1\) là hàm chẵn, nên đồ thị hàm số không nhận gốc tọa độ làm tâm đối xứng.

Vậy đáp án B sai.

Chọn B.

Câu 39: Trắc nghiệm ID: 247925

Số điểm cực trị của hàm số \(y =  - 2{{\rm{x}}^4} - {x^2} + 5\) là

Xem đáp án

TXĐ: \(D = \mathbb{R}\).

Ta có: \(y' =  - 8{x^3} - 2x\).

\(y' = 0 \Leftrightarrow  - 8{x^3} - 2x = 0 \Leftrightarrow  - 2x\left( {4{x^2} + 1} \right) = 0 \Leftrightarrow x = 0\).

Do \(x = 0\) là nghiệm bội 1, vậy \(x = 0\) chính là cực trị duy nhất của hàm số đã cho.

Chọn A.

Câu 40: Trắc nghiệm ID: 247926

Tìm điều kiện của tham số m để phương trình \(2{x^3} - 3{x^2} - 2m - 1 = 0\) có ba nghiệm phân biệt.

Xem đáp án

Để phương trình \(2{x^3} - 3{x^2} - 2m - 1 = 0\) có ba nghiệm phân biệt thì đồ thị hàm số \(y = 2{x^3} - 3{x^2} - 2m - 1\) có hai điểm cực trị nằm về hai phía trục hoành.

Ta có: \(f'\left( x \right) = 6{x^2} - 6x\).

\(f'\left( x \right) = 0 \Leftrightarrow 6{x^2} - 6x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\end{array} \right.\).

Với \(x = 0 \Rightarrow y =  - 2m - 1\).

Với \(x = 1 \Rightarrow y = {2.1^3} - {3.1^2} - 2m - 1 =  - 2m - 2\).

Để hai điểm cực trị nằm về hai phía trục hoành thì:

\(\begin{array}{l}\,\,\,\,\,\left( { - 2m - 1} \right)\left( { - 2m - 2} \right) < 0\\ \Leftrightarrow 4{m^2} + 6m + 2 < 0\\ \Leftrightarrow  - 1 < m <  - \dfrac{1}{2}\end{array}\)

Chọn A.

Bắt đầu thi để xem toàn bộ câu hỏi trong đề

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »