Lời giải của giáo viên
ToanVN.com
\(\begin{array}{l}\,\,\,\,\,\,\,{\log _3}x = 3{\log _3}a - 2{\log _{\dfrac{1}{3}}}b\\ \Leftrightarrow {\log _3}x = {\log _3}{a^3} + {\log _3}{b^2}\\ \Leftrightarrow {\log _3}x = {\log _3}{a^3}{b^2}\\ \Leftrightarrow x = {a^3}{b^2}.\end{array}\)
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Số điểm cực trị của hàm số \(y = - 2{{\rm{x}}^4} - {x^2} + 5\) là
Đường cong trong hình vẽ bên là đồ thị của một hàm số trong bốn hàm số được liệt kê dưới đây. Hỏi hàm số đó là hàm số nào ?
Cho hàm số \(y = {x^3} - 3{{\rm{x}}^2}\) . Có bao nhiêu tiếp tuyến của đồ thị hàm số song song với trục hoành?
Tính đạo hàm của hàm số \(y = {2^{{x^2} - \sin x + 2}}\)
Cho \({\left( {\pi - 2} \right)^m} > {\left( {\pi - 2} \right)^n}\) với m n , là các số nguyên. Khẳng định đúng là
Cho hình chóp đều S.ABCD có cạnh đáy bằng 4cm và chiều cao bằng 2cm . Bán kính mặt cầu ngoại tiếp hình chóp đã cho bằng
Tính giá trị nhỏ nhất của hàm số \(y = \sqrt {4 - {x^2}} \) trên đoạn \(\left[ { - 1;1} \right].\)
Cho hàm số \(f\left( x \right) = {\log _{\dfrac{1}{3}}}\left( {1 - {x^2}} \right).\) Biết tập nghiệm của bất phương trình \(f'\left( x \right) > 0\) là khoảng \(\left( {a;b} \right).\) Tính \(S = a + 2b.\)
Cho hình chóp S.ABC có đáy là tam giác vuông cân tại A, cạnh SA vuông góc với mặt phẳng (ABC), BC = a, SA = AB. Thể tích của khối chóp đã cho bằng
Cho hình chóp đều S.ABC có cạnh đáy bằng a, cạnh bên bằng 2a. Gọi M là trung điểm của SA. Thể tích của khối chóp M.ABC bằng
Tìm tập xác định của hàm số \(y = \log \left( {{x^3} - 3x + 2} \right)\)
Số mặt phẳng đối xứng của một hình hộp chữ nhật có chiều dài, chiều rộng, chiều cao đôi một khác nhau là
Cho a, b là các số thực dương, m là một số nguyên và n là một số nguyên dương. Tìm khẳng định sai.
Cho khối tứ diện ABCD có thể tích bằng V. Gọi M là trung điểm cạnh AB, N thuộc cạnh AC sao cho AN = 2 NC, P thuộc cạnh AD sao cho PD = 3 AP. Thể tích của khối đa diện MNP.BCD tính theo V là
Trong không gian cho hai điểm phân biệt A, B cố định. Tập hợp các điểm M thỏa mãn đẳng thức \(\overrightarrow {MA} .\overrightarrow {MB} = 0\) là