Tính thể tích của một vật thể tròn xoay được tạo bởi một hình phẳng giới hạn bởi các đường: \(y = {x^2} - 4;y = 2x - 4;x = 0;x = 2\) và quay quanh trục Ox.
A. \(\dfrac{{32\pi }}{3}\) đvdt
B. \(\dfrac{{32\pi }}{5}\) đvdt
C. \(\dfrac{{256\pi }}{15}\) đvdt
D. \(\dfrac{{39\pi }}{5}\) đvdt
Lời giải của giáo viên
ToanVN.com
Gọi V1 là thể tích vật thể tròn xoay tạo bởi khi quay hình phẳng giới hạn bởi các đường: \(y = 2x - 4;y = 0;x = 0;x = 2\) quay quanh trục Ox
\(\begin{array}{l} {V_1} = \pi \int\limits_0^2 {{{\left( {2x - 4} \right)}^2}dx = \pi \int\limits_0^2 {\left( {4{x^2} - 16x + 16} \right)dx} } \\ = \left. {\pi \left( {\frac{{4{x^3}}}{3} - 8{x^2} + 16x} \right)} \right|_0^2 = \frac{{32\pi }}{3} \ (đvdt) \end{array}\)
Gọi V2 là thể tích vật thể tròn xoay tạo bởi khi quay hình phẳng giới hạn bởi các đường: \(y = {x^2} - 4;y = 0;x = 0;x = 2\) quay quanh trục Ox
\(\begin{array}{l} {V_2} = \pi \int\limits_0^2 {{{\left( {{x^2} - 4} \right)}^2}dx = \pi \int\limits_0^2 {\left( {{x^4} - 8{x^2} + 16} \right)dx} } \\ = \left. {\pi \left( {\frac{{{x^5}}}{5} - \frac{{8{x^3}}}{3} + 16x} \right)} \right|_0^2 = \frac{{256\pi }}{{15}} \ (đvdt) \end{array}\)
Gọi V là thể tích cần tìm:
\(V = {V_2} - {V_1} = \frac{{256\pi }}{{15}} - \frac{{32\pi }}{3} = \frac{{32\pi }}{5} \ (đvdt)\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ tọa độ (Oxyz, ) cho điểm A(-2;3;4). Khoảng cách từ điểm A đến trục Ox là
Trong không gian với hệ tọa độ Oxyz , cho bốn điểm A(0;0;2), B(3;0;5), C(1;1;0), D(4;1;2) . Độ dài đường cao của tứ diện ABCD hạ từ đỉnh D xuống mặt phẳng (ABC) là:
Trong không gian với hệ tọa độ Oxyz, cho điểm \(A\left( -2;-4;5 \right)\). Phương trình nào dưới đây là phương trình của mặt cầu có tâm là A và cắt trục Oz tại hai điểm B, C sao cho tam giác ABC vuông.
Tính thể tích của một vật thể tròn xoay được tạo bởi một hình phẳng giới hạn bởi các đường: \(y = \ln x;x = 0;y = 0;y = 1\) và quay quanh trục Oy.
Tìm nguyên hàm của hàm số \(f(x)=\sin x \cdot \cos 2 x \cdot d x\)
Trong không gian với hệ tọa độ Oxyz , cho tam giác ABC có A(0;1;4) , B(3; -1;1), C(-2;3;2). Tính diện tích S tam giác ABC .
Trong không gian tọa độ Oxyz, cho mặt phẳng \(\left( P \right):x-2y-2z+10=0\) và 2 đường thẳng \({{\textΔ}_{1}}:\frac{x-2}{1}=\frac{y}{1}=\frac{z-1}{1}\) và \({{\textΔ}_{2}}:\frac{x-2}{1}=\frac{y}{1}=\frac{z+3}{4}\). Viết phương trình mặt cầu (S) có tâm thuộc \({{\textΔ}_{1}}\) đồng thời tiếp xúc với \({{\textΔ}_{2}}\) và (P).
Nguyên hàm F(x) của hàm số \(f(x)=2 x+\frac{1}{\sin ^{2} x}\) thỏa mãn \(F\left(\frac{\pi}{4}\right)=-1\) là
Trong không gian với hệ tọa độ Oxyz , mặt cầu (S ) tâm I (1; 2;- 3) và đi qua điểm A(1;0;4) có phương trình là
Trong không gian với hệ tọa độ Oxyz , cho bốn điểm A(0;1;1);B(-1;0;2);C(-1;1;0);D(2;1;-2) . Khi đó thể tích tứ diện ABCD là
Trong không gian với hệ trục tọa độ Oxyz , cho điểm A(3;-2;1) và mặt phẳng \((P): x+y+2 z-5=0\). Đường thẳng nào sau đây đi qua A và song song với mặt phẳng (P)?
Trong hệ tọa độ Oxyz , phương trình nào sau đây là phương trình mặt cầu tâm\(I(1 ; 2 ; 3)\) bán kính r =1?
Trong không gian với hệ tọa độ Oxyz , cho hai vectơ \(\vec m=(4;1;3);\vec n=(0;0;1)\)Gọi p là vectơ cùng hướng với \([\vec m,\vec n]\), (tích có hướng của hai vectơ \(\vec m\,và\, \vec n\). Biết \(|\vec p|=15\), tìm tọa độ \(\vec p\)
Trong không gian Oxyz, điểm nào sau đây thuộc trục tung Oy?
Trong không gian Oxyz cho \(\overrightarrow a \) và \(\overrightarrow b\) là một cặp vectơ chỉ phương của mặt phẳng (P) và vectơ \(\overrightarrow n \,\, \ne \,\,\overrightarrow 0 \).