Trong không gian với hệ tọa độ Oxyz, cho điểm \(A\left( -2;-4;5 \right)\). Phương trình nào dưới đây là phương trình của mặt cầu có tâm là A và cắt trục Oz tại hai điểm B, C sao cho tam giác ABC vuông.
A. \({{\left( x+2 \right)}^{2}}+{{\left( y+4 \right)}^{2}}+{{\left( z-5 \right)}^{2}}=40\)
B. \({{\left( x+2 \right)}^{2}}+{{\left( y+4 \right)}^{2}}+{{\left( z-5 \right)}^{2}}=82\)
C. \({{\left( x+2 \right)}^{2}}+{{\left( y+4 \right)}^{2}}+{{\left( z-5 \right)}^{2}}=58\)
D. \({{\left( x+2 \right)}^{2}}+{{\left( y+4 \right)}^{2}}+{{\left( z-5 \right)}^{2}}=90\)
Lời giải của giáo viên
ToanVN.com
Gọi \(H\left( 0;0;5 \right)\) là hình chiếu vuông góc của A xuống trục Oz.
Khi đó tam giác OHB vuông cân tại H suy ra \(OH=\frac{R}{\sqrt{2}}\Rightarrow R=OH\sqrt{2}=2\sqrt{10}\).
Suy ra \(\left( S \right):{{\left( x+2 \right)}^{2}}+{{\left( y+4 \right)}^{2}}+{{\left( z-5 \right)}^{2}}=40\).
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ tọa độ (Oxyz, ) cho điểm A(-2;3;4). Khoảng cách từ điểm A đến trục Ox là
Trong không gian với hệ tọa độ Oxyz , cho bốn điểm A(0;0;2), B(3;0;5), C(1;1;0), D(4;1;2) . Độ dài đường cao của tứ diện ABCD hạ từ đỉnh D xuống mặt phẳng (ABC) là:
Tính thể tích của một vật thể tròn xoay được tạo bởi một hình phẳng giới hạn bởi các đường: \(y = \ln x;x = 0;y = 0;y = 1\) và quay quanh trục Oy.
Trong không gian tọa độ Oxyz, cho mặt phẳng \(\left( P \right):x-2y-2z+10=0\) và 2 đường thẳng \({{\textΔ}_{1}}:\frac{x-2}{1}=\frac{y}{1}=\frac{z-1}{1}\) và \({{\textΔ}_{2}}:\frac{x-2}{1}=\frac{y}{1}=\frac{z+3}{4}\). Viết phương trình mặt cầu (S) có tâm thuộc \({{\textΔ}_{1}}\) đồng thời tiếp xúc với \({{\textΔ}_{2}}\) và (P).
Trong không gian với hệ tọa độ Oxyz , cho tam giác ABC có A(0;1;4) , B(3; -1;1), C(-2;3;2). Tính diện tích S tam giác ABC .
Tìm nguyên hàm của hàm số \(f(x)=\sin x \cdot \cos 2 x \cdot d x\)
Trong không gian với hệ tọa độ Oxyz , cho bốn điểm A(0;1;1);B(-1;0;2);C(-1;1;0);D(2;1;-2) . Khi đó thể tích tứ diện ABCD là
Trong không gian với hệ tọa độ Oxyz , mặt cầu (S ) tâm I (1; 2;- 3) và đi qua điểm A(1;0;4) có phương trình là
Trong không gian với hệ tọa độ Oxyz , cho hai vectơ \(\vec m=(4;1;3);\vec n=(0;0;1)\)Gọi p là vectơ cùng hướng với \([\vec m,\vec n]\), (tích có hướng của hai vectơ \(\vec m\,và\, \vec n\). Biết \(|\vec p|=15\), tìm tọa độ \(\vec p\)
Trong hệ tọa độ Oxyz , phương trình nào sau đây là phương trình mặt cầu tâm\(I(1 ; 2 ; 3)\) bán kính r =1?
Viết công thức tính thể tích V của khối tròn xoay được tạo ra khi quay hình thang cong giới hạn bởi đồ thị hàm số y = f(x), trục Ox và hai đường thẳng x = a, x = b (a < b) quanh trục Ox.
Nguyên hàm F(x) của hàm số \(f(x)=2 x+\frac{1}{\sin ^{2} x}\) thỏa mãn \(F\left(\frac{\pi}{4}\right)=-1\) là
Trong không gian với hệ trục tọa độ Oxyz , cho điểm A(3;-2;1) và mặt phẳng \((P): x+y+2 z-5=0\). Đường thẳng nào sau đây đi qua A và song song với mặt phẳng (P)?
Trong không gian Oxyz, điểm nào sau đây thuộc trục tung Oy?
Trong không gian với hệ tọa độ Oxyz, phương trình nào dưới đây là phương trình mặt cầu tâm \(I(1 ; 2 ;-4)\) và thể tích của khối cầu tương ứng bằng \(36\pi\) .