Tìm nguyên hàm của hàm số \(f(x)=\sin x \cdot \cos 2 x \cdot d x\)
A. \(\int f(x) d x=\frac{1}{6} \cos 3 x+\frac{1}{2} \sin x+C\)
B. \(\int f(x) d x=\frac{-2 \cos ^{3} x}{3}+\cos x+C\)
C. \(\int f(x) d x=\frac{1}{6} \cos 3 x-\frac{1}{2} \sin x+C\)
D. \(\int f(x) d x=\frac{\cos ^{3} x}{3}+\cos x+C\)
Lời giải của giáo viên
ToanVN.com
\(\int \sin x \cdot \cos 2 x d x=\int\left(2 \cos ^{2} x-1\right) \sin x d x=-\int\left(2 \cos ^{2} x-1\right) d(\cos x)=\frac{-2 \cos ^{3} x}{3}+\cos x+C\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ tọa độ (Oxyz, ) cho điểm A(-2;3;4). Khoảng cách từ điểm A đến trục Ox là
Trong không gian với hệ tọa độ Oxyz , cho bốn điểm A(0;0;2), B(3;0;5), C(1;1;0), D(4;1;2) . Độ dài đường cao của tứ diện ABCD hạ từ đỉnh D xuống mặt phẳng (ABC) là:
Trong không gian với hệ tọa độ Oxyz, cho điểm \(A\left( -2;-4;5 \right)\). Phương trình nào dưới đây là phương trình của mặt cầu có tâm là A và cắt trục Oz tại hai điểm B, C sao cho tam giác ABC vuông.
Tính thể tích của một vật thể tròn xoay được tạo bởi một hình phẳng giới hạn bởi các đường: \(y = \ln x;x = 0;y = 0;y = 1\) và quay quanh trục Oy.
Trong không gian tọa độ Oxyz, cho mặt phẳng \(\left( P \right):x-2y-2z+10=0\) và 2 đường thẳng \({{\textΔ}_{1}}:\frac{x-2}{1}=\frac{y}{1}=\frac{z-1}{1}\) và \({{\textΔ}_{2}}:\frac{x-2}{1}=\frac{y}{1}=\frac{z+3}{4}\). Viết phương trình mặt cầu (S) có tâm thuộc \({{\textΔ}_{1}}\) đồng thời tiếp xúc với \({{\textΔ}_{2}}\) và (P).
Trong không gian với hệ tọa độ Oxyz , cho tam giác ABC có A(0;1;4) , B(3; -1;1), C(-2;3;2). Tính diện tích S tam giác ABC .
Nguyên hàm F(x) của hàm số \(f(x)=2 x+\frac{1}{\sin ^{2} x}\) thỏa mãn \(F\left(\frac{\pi}{4}\right)=-1\) là
Trong không gian với hệ tọa độ Oxyz , mặt cầu (S ) tâm I (1; 2;- 3) và đi qua điểm A(1;0;4) có phương trình là
Trong không gian với hệ tọa độ Oxyz , cho bốn điểm A(0;1;1);B(-1;0;2);C(-1;1;0);D(2;1;-2) . Khi đó thể tích tứ diện ABCD là
Trong không gian Oxyz, điểm nào sau đây thuộc trục tung Oy?
Trong không gian với hệ trục tọa độ Oxyz , cho điểm A(3;-2;1) và mặt phẳng \((P): x+y+2 z-5=0\). Đường thẳng nào sau đây đi qua A và song song với mặt phẳng (P)?
Trong hệ tọa độ Oxyz , phương trình nào sau đây là phương trình mặt cầu tâm\(I(1 ; 2 ; 3)\) bán kính r =1?
Trong không gian với hệ tọa độ Oxyz , cho hai vectơ \(\vec m=(4;1;3);\vec n=(0;0;1)\)Gọi p là vectơ cùng hướng với \([\vec m,\vec n]\), (tích có hướng của hai vectơ \(\vec m\,và\, \vec n\). Biết \(|\vec p|=15\), tìm tọa độ \(\vec p\)
Trong không gian với hệ tọa độ (Oxyz, ) cho điểm A( 2;- ,3;5 ). Tọa độ điểm A' là đối xứng của điểm A qua trục Oz là
Trong không gian Oxyz cho \(\overrightarrow a \) và \(\overrightarrow b\) là một cặp vectơ chỉ phương của mặt phẳng (P) và vectơ \(\overrightarrow n \,\, \ne \,\,\overrightarrow 0 \).