Hai vectơ được gọi là bằng nhau khi và chỉ khi
A. Giá của chúng trùng nhau và độ dài của chúng bằng nhau.
B. Chúng trùng với một trong các cặp cạnh đối của một hình bình hành.
C. Chúng trùng với một trong các cặp cạnh đối của một tam giác đều.
D. Chúng cùng hướng và độ dài của chúng bằng nhau.
Lời giải của giáo viên
ToanVN.com
Theo định nghĩa hai vec tơ bằng nhau ta có
Hai vectơ được gọi là bằng nhau khi và chỉ khi chúng cùng hướng và độ dài của chúng bằng nhau.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y=x^{2}-2 x+3\) . Tìm mệnh đề đúng trong các mệnh đề sau :
Tung độ giao điểm của đồ thị hàm số \(y=2 x^{2}+6 x+3\) và đường thẳng \(y=-2x-3\) là
Cho parabol \(y=a x^{2}-4 x+c\) đi qua điểm M(3;0) và có trục đối xứng x=2. Khi đó hệ số a, c là:
Cho hai tập hợp \(B=\mathbb{R} \backslash(0 ;+\infty)\).Khi đó tập hợp B là
Cho parabol (P) \(y=3 x^{2}-2 x+1\) . Điểm nào sau đây là đỉnh của (P)
Tập xác định của hàm số \(f(x) = \left\{ \begin{array}{l} \frac{x}{{x + 1}} \text{ nếu } x>0 \\ \frac{{\sqrt[3]{{x + 1}}}}{{x - 1}}\text{ nếu } -1\le x\le0 \end{array} \right.\)
Parabol (P) đi qua ba điểm A(-1;0), B(0;-4) và C(1;-6) có phương trình là
Parabol \(y=a x^{2}+b x+c\) có đồ thị như hình vẽ bên thì dấu của các hệ số a, b, c là:

Cho A(-2;-1), B(-1;3), C(m+1;n-2). Nếu \(2 \overrightarrow{A B}-3 \overrightarrow{A C}=\overrightarrow{0}\) thì ta có hệ thức nào sau đây đúng ?
Cho tam giác đều ABC có cạnh bằng a. Giá trị \(|\overrightarrow{A B}-\vec{CA}|\) bằng bao nhiêu ?
Tập xác định của hàm số \(y=\frac{x^{2}-2 x+7}{x-1}\) là
Cho A(2;1), B(1;2). Để tứ giác OABC là hình bình hành thì tọa độ điểm C là
Cho hình vuông ABCD có cạnh bằng a. Khi đó giá trị \(|\overrightarrow{A C}+\overrightarrow{B D}|\) bằng bao nhiêu ?
Cho hình thang ABCD với hai cạnh đáy là AB=3a và CD=6a. Khi đó \(|\overrightarrow{AB}+\overrightarrow{C D}|\) bằng bao nhiêu ?