Lời giải của giáo viên
ToanVN.com
Đáp án đúng: b
Hoành độ tiếp điểm của hai đồ thị hàm số là nghiệm của hệ phương trình:
\(\begin{array}{l}\left\{ \begin{array}{l}f\left( x \right) = g\left( x \right)\\f'\left( x \right) = g'\left( x \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^3} + \dfrac{5}{4}x - 2 = {x^2} + x - 2\\3{x^2} + \dfrac{5}{4} = 2x + 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{x^3} - {x^2} + \dfrac{1}{4}x = 0\\3{x^2} - 2x + \dfrac{1}{4} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x = 0\\x = \dfrac{1}{2}\end{array} \right.\\\left[ \begin{array}{l}x = \dfrac{1}{2}\\x = \dfrac{1}{6}\end{array} \right.\end{array} \right. \Leftrightarrow x = \dfrac{1}{2}\end{array}\)
Vậy $x = \dfrac{1}{2}$ là hoành độ điểm tiếp xúc.
Hướng dẫn giải:
- Điều kiện để hai đường cong tiếp xúc là hệ phương trình $\left\{ \begin{gathered} f\left( x \right) = g\left( x \right) \hfill \\ f'\left( x \right) = g'\left( x \right) \hfill \\ \end{gathered} \right.$ có nghiệm.
- Giải hệ trên tìm $x$.
Hoành độ tiếp điểm của hai đồ thị hàm số là nghiệm của hệ phương trình:
\(\begin{array}{l}\left\{ \begin{array}{l}f\left( x \right) = g\left( x \right)\\f'\left( x \right) = g'\left( x \right)\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x^3} + \dfrac{5}{4}x - 2 = {x^2} + x - 2\\3{x^2} + \dfrac{5}{4} = 2x + 1\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}{x^3} - {x^2} + \dfrac{1}{4}x = 0\\3{x^2} - 2x + \dfrac{1}{4} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}x = 0\\x = \dfrac{1}{2}\end{array} \right.\\\left[ \begin{array}{l}x = \dfrac{1}{2}\\x = \dfrac{1}{6}\end{array} \right.\end{array} \right. \Leftrightarrow x = \dfrac{1}{2}\end{array}\)
Vậy $x = \dfrac{1}{2}$ là hoành độ điểm tiếp xúc.
Hướng dẫn giải:
- Điều kiện để hai đường cong tiếp xúc là hệ phương trình $\left\{ \begin{gathered} f\left( x \right) = g\left( x \right) \hfill \\ f'\left( x \right) = g'\left( x \right) \hfill \\ \end{gathered} \right.$ có nghiệm.
- Giải hệ trên tìm $x$.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(y = \dfrac{{x + b}}{{cx - 1}}\) có đồ thị như hình bên. Mệnh đề nào dưới đây đúng?

Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\). Mặt phẳng \(\left( {SAB} \right)\) và \(\left( {SAD} \right)\) cùng vuông góc với mặt phẳng \(\left( {ABCD} \right)\). Đường thẳng \(SC\) tạo với đáy góc \({45^0}\). Gọi \(M,N\) lần lượt là trung điểm của \(AB\) và \(AD\). Thể tích của khối chóp \(S.MCDN\) là:
Hàm số \(y = {\log _a}x\) và \(y = {\log _b}x\) có đồ thị như hình vẽ bên:
Đường thẳng \(y = 3\) cắt hai đồ thị tại các điểm có hoành độ \({x_1},\,\,{x_2}.\) Biết rằng \({x_2} = 2{x_1},\) giá trị của \(\dfrac{a}{b}\) bằng:
Cho $a > 0;a \ne 1,b > 0$, khi đó nếu ${\log _a}b = N$ thì:
Rút gọn biểu thức $B = \dfrac{{{a^{2\sqrt 2 }} - {b^{2\sqrt 3 }}}}{{{{\left( {{a^{\sqrt 2 }} - {b^{\sqrt 3 }}} \right)}^2}}} + 1$ ta được kết quả là:
Hai hình tứ diện có các cạnh tương ứng bằng nhau thì chúng:
Cho hàm số $y = f\left( x \right)$ có bảng biến thiên như hình vẽ. Chọn kết luận đúng:

Đồ thị hàm số $y = {x^3} - \left( {3m + 1} \right){x^2} + \left( {{m^2} + 3m + 2} \right)x + 3$ có điểm cực tiểu và điểm cực đại nằm về hai phía của trục tung khi:
Cho tứ diện \(ABCD\) có \(G\) là điểm thỏa mãn \(\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} + \overrightarrow {GD} = \overrightarrow 0 \). Mặt phẳng thay đổi chứa \(BG\) và cắt \(AC,\,\,AD\) lần lượt tại \(M\) và \(N\). Giá trị nhỏ nhất của tỉ số \(\dfrac{{{V_{ABMN}}}}{{{V_{ABCD}}}}\) là
Đồ thị hàm số $y = {x^3} - 3x + 2$ có $2$ điểm cực trị $A,\;B.$ Diện tích tam giác $OAB\;$ với $O(0;0)$ là gốc tọa độ bằng:
Cho hàm số $y = f\left( x \right)$ có đạo hàm trên $\left( {a;b} \right)$. Nếu $f'\left( x \right)$ đổi dấu từ âm sang dương qua điểm ${x_0}$ thuộc \((a;b)\) thì