Đề thi HK2 môn Toán 12 năm 2021 - Trường THPT Phú Nhuận
Đề thi HK2 môn Toán 12 năm 2021 - Trường THPT Phú Nhuận
-
Hocon247
-
40 câu hỏi
-
60 phút
-
200 lượt thi
-
Trung bình
Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com
Viết công thức tính diện tích hình phẳng được giới hạn bởi đồ thị các hàm số \(y = f\left( x \right),\) \(y = g\left( x \right)\) và các đường thẳng \(x = a,\,\,x = b\,\,\left( {a < b} \right)\).
Diện tích hình phẳng được giới hạn bởi đồ thị các hàm số \(y = f\left( x \right),\) \(y = g\left( x \right)\)và các đường thẳng \(x = a,\,\,x = b\,\,\left( {a < b} \right)\) là: \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).
Trong không gian Oxyz, tìm một vectơ chỉ phương của đường thẳng d: \(\frac{{x - 4}}{7} = \frac{{y - 5}}{4} = \frac{{z + 7}}{{ - 5}}\)
Đường thẳng \(d:\frac{{x - 4}}{7} = \frac{{y - 5}}{4} = \frac{{z + 7}}{{ - 5}}\) có 1 VTCP là \(\left( {7;4; - 5} \right).\)
Dựa vào các đáp án ta thấy vectơ \(\overrightarrow u = \left( {14;8; - 10} \right)\) cùng phương với vectơ \(\left( {7;4; - 5} \right)\) nên cũng là 1 VTCP của đường thẳng d.
Tìm mô đun của số phức \(z = 5 - 4i\)
\(\left| {\overrightarrow z } \right| = \sqrt {{5^2} + {{\left( { - 4} \right)}^2}} = \sqrt {41} .\)
Cho số phức \(z = 1 - 2i\). Tìm phần ảo của số phức \(z\).
\(z = 1 - 2i\) có phần ảo là -2
Trong không gian Oxyz, mặt cầu \(\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 2} \right)^2} = 9\) có tâm và bán kính lần lượt là
Mặt cầu \(\left( S \right):\,\,{\left( {x + 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 2} \right)^2} = 9\) có tâm \(I\left( { - 1;3;2} \right)\) và bán kính \(R = \sqrt 9 = 3.\)
Tìm số phức liên hợp của số phức \(z = 1 - 2i\)
\(z = 1 - 2i \Rightarrow \overline z = 1 + 2i.\)
Trong không gian Oxyz, cho hai điểm \(A\left( { - 1;2;3} \right)\) và \(B\left( {3;0; - 2} \right)\). Tìm tọa độ của vectơ \(\overrightarrow {AB} .\)
Ta có: \(\left\{ \begin{array}{l}A\left( { - 1;2;3} \right)\\B\left( {3;0; - 2} \right)\end{array} \right. \Rightarrow \overrightarrow {AB} = \left( {4; - 2; - 5} \right).\)
Trong không gian Oxyz, mặt phẳng \(\left( P \right)\) đi qua điểm \(A\left( {1;2;0} \right)\) và vuông góc với đường thẳng \(d:\frac{{x + 1}}{2} = \frac{y}{1} = \frac{{z - 1}}{{ - 1}}\) có phương trình là
Đường thẳng d có 1 VTCP là: \(\overrightarrow u \left( {2;1; - 1} \right)\).
Vì \(d \bot \left( P \right)\) nên mặt phẳng (P) có 1 VTPT là: \(\overrightarrow {{n_P}} = \overrightarrow u = \left( {2;1; - 1} \right)\).
Mặt phẳng (P) đi qua \(A\left( {1;2;0} \right)\) và có 1 VTPT \(\overrightarrow {{n_P}} \left( {2;1; - 1} \right)\) là: \(2\left( {x - 1} \right) + 1\left( {y - 2} \right) - 1\left( {z - 0} \right) = 0\)\( \Leftrightarrow 2x + y - z - 4 = 0\).
Họ nguyên hàm của hàm số \(f\left( x \right) = 4{x^3}\) là
\(f\left( x \right) = 4{x^3} \Rightarrow F\left( x \right) = {x^4} + C.\)
Công thức nguyên hàm nào sau đây đúng?
\(\begin{array}{l}\int {{e^x}dx = {e^x} + C} \\\int {dx = x + C} \\\int {\frac{1}{x}dx = \ln \left| x \right| + C} \\\int {\cos xdx = \sin x + C} \end{array}\)
Trong không gian Oxyz, cho \(\overrightarrow a = \left( { - 1;3;2} \right)\) và \(\overrightarrow b = \left( { - 3; - 1;2} \right)\). Tính \(\overrightarrow a .\overrightarrow b .\)
\(\overrightarrow a .\overrightarrow b = \left( { - 1} \right).\left( { - 3} \right) + 3.\left( { - 1} \right) + 2.2\)\( = 3 - 3 + 4 = 4\)
Trong không gian Oxyz, điểm \(M\left( {3;4; - 2} \right)\) thuộc mặt phẳng nào trong các mặt phẳng sau?
\(3 + 4 - 7 = 0\) \( \Rightarrow M\left( {3;4; - 2} \right) \in \left( R \right):x + y - 7 = 0\)
Trong không gian Oxyz, phương trình nào dưới đây là phương trình mặt cầu tâm \(I\left( {1;0; - 3} \right)\)và bán kính \(R = 3\)?
Phương trình mặt cầu tìm \(I\left( {1;0; - 3} \right)\), bán kính R = 3 là: \({\left( {x - 1} \right)^2} + {y^2} + {\left( {z + 3} \right)^2} = 9.\)
Trong không gian Oxyz, phương trình mặt phẳng \(\left( P \right)\) đi qua điểm \(M\left( { - 1;2;0} \right)\) và có vectơ pháp tuyến \(\overrightarrow n = \left( {4;0; - 5} \right)\) là
Phương trình mặt phẳng (P) là: \(4\left( {x + 1} \right) - 5z = 0 \Leftrightarrow 4x - 5z + 4 = 0.\)
Nghiệm của phương trình \(\left( {3 + i} \right)z + \left( {4 - 5i} \right) = 6 - 3i\) là
\(\begin{array}{l}\,\,\,\,\,\left( {3 + i} \right)z + \left( {4 - 5i} \right) = 6 - 3i\\ \Leftrightarrow \left( {3 + i} \right)z = 6 - 3i - \left( {4 - 5i} \right)\\ \Leftrightarrow \left( {3 + i} \right)z = 2 + 2i\\ \Leftrightarrow z = \frac{{2 + 2i}}{{3 + i}} = \frac{4}{5} + \frac{2}{5}i\end{array}\)
Trong không gian Oxyz, mặt phẳng đi qua tâm của mặt cầu \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {z^2} = 12\) và song song với mặt phẳng \(\left( {Oxz} \right)\)có phương trình là
Mặt cầu \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {z^2} = 12\) có tâm \(I\left( {1; - 2;0} \right)\).
Mặt phẳng cần tìm song song với mặt phẳng (Oxz) nên có 1 VTPT là \(\overrightarrow j = \left( {0;1;0} \right)\).
Vậy phương trình mặt phẳng cần tìm là: \(1\left( {y + 2} \right) = 0 \Leftrightarrow y + 2 = 0.\)
Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^2} - 2x\) và trục hoành.
Xét phương trình hoành độ giao điểm: \({x^2} - 2x = 0 \Rightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\).
Diện tích hình phẳng cần tính là: \(S = \int\limits_0^2 {\left| {{x^2} - 2x} \right|dx} = - \int\limits_0^2 {\left( {{x^2} - 2x} \right)dx} = \frac{4}{3}.\)
Cho \(F\left( x \right)\) là một nguyên hàm của\(f\left( x \right)\) trên \(\mathbb{R}\) và \(F\left( 0 \right) = 2,\) \(F\left( 3 \right) = 7\). Tính \(\int\limits_0^3 {f\left( x \right)} dx.\)
Ta có : \(\int\limits_0^3 {f\left( x \right)dx} = F\left( 3 \right) - F\left( 0 \right) = 7 - 2 = 5.\)
Gọi \({z_1},\,\,{z_2}\) là hai nghiệm phức của phương trình \({z^2} - 6z + 14 = 0\). Tính \(S = \left| {{z_1}} \right| + \left| {{z_2}} \right|.\)
\(\begin{array}{l}{z^2} - 6z + 14 = 0 \Leftrightarrow \left[ \begin{array}{l}{z_1} = 3 + \sqrt 5 i\\{z_2} = 3 - \sqrt 5 i\end{array} \right.\\ \Rightarrow \left| {{z_1}} \right| = \left| {{z_2}} \right| = \sqrt {9 + 5} = \sqrt {14} \\ \Rightarrow \left| {{z_1}} \right| + \left| {{z_2}} \right| = 2\sqrt {14} .\end{array}\)
Trong không gian Oxyz, tính khoảng cách giữa hai mặt phẳng \(\left( P \right):\,\,2x + 2y - z - 11 = 0\) và \(\left( Q \right):\,\,2x + 2y - z + 4 = 0\).
\(d\left( {\left( P \right),\left( Q \right)} \right) = \frac{{\left| { - 11 - 4} \right|}}{{\sqrt {{2^2} + {2^2} + {{\left( { - 1} \right)}^2}} }} = 5.\)
Cho \(z = 1 + \sqrt 3 i\). Tìm số phức nghịch đảo của số phức \(z\).
\(\frac{1}{z} = \frac{1}{{1 + \sqrt 3 i}} = \frac{1}{4} - \frac{{\sqrt 3 }}{4}i.\)
Tính tích phân \(I = \int\limits_0^{2019} {{e^{2x}}dx} .\)
\(\int\limits_0^{2019} {{e^{2x}}dx} = \left. {\frac{1}{2}{e^{2x}}} \right|_0^{2019}\)\( = \frac{1}{2}\left( {{e^{4038}} - {e^0}} \right) = \frac{1}{2}\left( {{e^{4038}} - 1} \right).\)
Cho hàm số \(f\left( x \right)\) thỏa mãn \(\int\limits_0^{2019} {f\left( x \right)dx} = 1\). Tính tích phân \(I = \int\limits_0^1 {f\left( {2019x} \right)dx} .\)
Đặt \(t = 2019x \Rightarrow dt = 2019dx.\)
Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 0\\x = 1 \Rightarrow t = 2019\end{array} \right.\).
Khi đó ta có: \(I = \int\limits_0^1 {f\left( {2019x} \right)dx} = \int\limits_0^{2019} {f\left( t \right)\frac{{dt}}{{2019}}} \)\( = \frac{1}{{2019}}.\int\limits_0^{2019} {f\left( t \right)dt} \)\( = \frac{1}{{2019}}.\int\limits_0^{2019} {f\left( x \right)dx} = \frac{1}{{2019}}.\)
Trong không gian Oxyz, mặt phẳng \(\left( P \right)\) đi qua 2 điểm \(A\left( {1;2;0} \right)\), \(B\left( {2;3;1} \right)\) và song song với trục \(Oz\) có phương trình là
Gọi \(\overrightarrow {{n_P}} \) là 1 VTPT của \(\left( P \right)\).
Vì \(A,\,\,B \in \left( P \right) \Rightarrow AB \subset \left( P \right)\) \( \Rightarrow \overrightarrow {{n_P}} .\overrightarrow {AB} = 0\,\,\,\left( 1 \right)\).
Lại có \(\left( P \right)\parallel Oz\) nên \(\overrightarrow {{n_{ P}}} .\overrightarrow k = 0\,\,\,\left( 2 \right)\) với \(\overrightarrow k \left( {0;0;1} \right)\).
Từ (1) và (2) \( \Rightarrow \overrightarrow {{n_P}} = \left[ {\overrightarrow {AB} ;\overrightarrow k } \right].\)
Ta có: \(\overrightarrow {AB} = \left( {1;1;1} \right);\,\,\,\,\overrightarrow k = \left( {0;0;1} \right) \)
\(\Rightarrow \left[ {\overrightarrow {AB} ;\overrightarrow k } \right] = \left( {1; - 1;0} \right).\)
Suy ra mặt phẳng (P) có 1 VTPT là \(\overrightarrow {{n_P}} = \left( {1; - 1;0} \right)\).
Vậy phương trình mặt phẳng (P) là: \(1.\left( {x - 1} \right) - 1.\left( {y - 2} \right) = 0\)\( \Leftrightarrow x - y + 1 = 0\)
Cho \(\int\limits_0^4 {f\left( x \right)dx} = 10\) và \(\int\limits_4^8 {f\left( x \right)dx} = 6\). Tính \(\int\limits_0^8 {f\left( x \right)dx} .\)
\(\int\limits_0^8 {f\left( x \right)dx} \)\( = \int\limits_0^4 {f\left( x \right)dx} + \int\limits_4^8 {f\left( x \right)dx} \) \( = 10 + 6 = 16\)
Họ nguyên hàm của hàm số \(y = x\sin x\) là
Đặt \(\left\{ \begin{array}{l}u = x \Rightarrow du = dx\\dv = \sin xdx \Rightarrow v = - \cos x\end{array} \right..\)
\(\begin{array}{l} \Rightarrow \int {x\sin xdx = - x\cos x - \int { - \cos xdx} } \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = - x\cos x + \int {\cos xdx} \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, = - x\cos x + \sin x + C\end{array}\)
Cho số phức \(z = 2 + 5i\). Điểm biểu diễn số phức z trong mặt phẳng Oxy có tọa độ là
Điểm biểu diễn số phức \(z = 2 + 5i\) trong mặt phẳng tọa độ là \(M\left( {2;5} \right)\).
Cho \(\int\limits_{ - 1}^2 {f\left( x \right)dx} = 3\) và \(\int\limits_2^{ - 1} {g\left( x \right)dx} = 1\). Tính \(I = \int\limits_{ - 1}^2 {\left[ {x + 2f\left( x \right) - 3g\left( x \right)} \right]dx} \)
\(\begin{array}{l}I = \int\limits_{ - 1}^2 {\left[ {x + 2f\left( x \right) - 3g\left( x \right)} \right]dx} \\\,\,\,\, = \int\limits_{ - 1}^2 {xdx} + 2\int\limits_{ - 1}^2 {f\left( x \right)dx} - 3\int\limits_{ - 1}^2 {g\left( x \right)dx} \\\,\,\,\, = \left. {\frac{{{x^2}}}{2}} \right|_{ - 1}^2 + 2\int\limits_{ - 1}^2 {f\left( x \right)dx} + 3\int\limits_2^{ - 1} {g\left( x \right)dx} \\\,\,\,\, = \frac{{{2^2}}}{2} - \frac{{{{\left( { - 1} \right)}^2}}}{2} + 2.3 + 3.1 = \frac{{21}}{2}.\end{array}\)
Trong không gian Oxyz, cho \(d:\frac{{x - 1}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 3}}{2}\). Đường thẳng nào sau đây song song với d?
Đường thẳng d có 1 VTCP là \(\overrightarrow u \left( {2; - 1;2} \right)\).
Dễ thấy đáp án D đường thẳng \(\Delta \) có 1 VTCP là \(\overrightarrow {{u_4}} = \left( {2;1; - 2} \right)\) không cùng phương với vectơ \(\overrightarrow u \left( {2; - 1;2} \right)\) nên ta loại đáp án D.
Chọn \(A\left( {1; - 1;3} \right) \in d\), thay tọa độ điểm A vào đáp án A ta có: \(\frac{{1 - 2}}{{ - 2}} = \frac{{ - 1}}{1} = \frac{{3 - 1}}{{ - 2}}\) (vô lí) \( \Rightarrow A \notin \Delta \).
Vậy đường thẳng ở đáp án A song song với đường thẳng d.
Tìm họ nguyên hàm của hàm số \(f\left( x \right) = {e^{5x - 3}}.\)
\(\int {{e^{5x - 3}}dx} = \frac{1}{5}{e^{5x - 3}} + C.\)
Tìm các số thực \(x,y\) thỏa mãn: \(x + 2y + \left( {2x - 2y} \right)i = 7 - 4i\)
\(\begin{array}{l}\,\,\,\,\,\,\,x + 2y + \left( {2x - 2y} \right)i = 7 - 4i\\ \Leftrightarrow \left\{ \begin{array}{l}x + 2y = 7\\2x - 2y = - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 3\end{array} \right.\end{array}\)
Trong không gian Oxyz, phương trình đường thẳng đi qua hai điểm \(M\left( { - 1;0;0} \right)\) và \(N\left( {0;1;2} \right)\) là
Đường thẳng đi qua điểm M, N nhận \(\overrightarrow {MN} = \left( {1;1;2} \right)\) là 1 VTCP.
Vậy phương trình đường thẳng MN là: \(\frac{{x + 1}}{1} = \frac{y}{1} = \frac{z}{2}.\)
Trong mặt phẳng tọa độ Oxy, cho điểm \(A\left( { - 3;4} \right)\) biểu diễn cho số phức z. Tìm tọa độ điểm B biểu diễn cho số phức \(\omega = i\overline z \).
Điểm A(-3;4) biểu diễn cho số phức z \( \Rightarrow z = - 3 + 4i\) \( \Rightarrow \overline z = - 3 - 4i\).
\( \Rightarrow \omega = i\overline z = i\left( { - 3 - 4i} \right) = 4 - 3i.\)
Vậy điểm biểu diễn số phức w là \(B\left( {4; - 3} \right).\)
Cho số phức \(z = 1 + 3i\). Tìm phần thực của số phức \({z^2}\).
\(z = 1 + 3i \Rightarrow {z^2} = {\left( {1 + 3i} \right)^2} = - 8 + 6i\)
Vậy phần thực của số phức \({z^2}\) là -8.
Cho tích phân \(I = \int\limits_3^5 {\frac{1}{{2x - 1}}dx} = a\ln 3 + b\ln 5\,\,\,\left( {a,b \in \mathbb{Q}} \right)\). Tính \(S = a + b.\)
\(\begin{array}{l}I = \int\limits_3^5 {\frac{1}{{2x - 1}}dx} = \left. {\frac{1}{2}\ln \left| {2x - 1} \right|} \right|_3^5\\\,\,\,\, = \frac{1}{2}\left( {\ln \left| {2.5 - 1} \right| - \ln \left| {2.3 - 1} \right|} \right)\\\,\,\,\, = \frac{1}{2}.\left( {\ln 9 - \ln 5} \right) = \ln 3 - \frac{1}{2}\ln 5\\ \Rightarrow a = 1;\,\,b = - \frac{1}{2}.\end{array}\)
Vậy \(S = a + b = 1 - \frac{1}{2} = \frac{1}{2}.\)
Tính \(I = \int\limits_0^1 {\left( {2x - 5} \right)dx} .\)
\(I = \int\limits_0^1 {\left( {2x - 5} \right)dx} \)\( = \left. {\left( {{x^2} - 5x} \right)} \right|_0^1 = \left( {1 - 5} \right) - 0 = - 4\)
Trong không gian Oxyz, cho ba vectơ\(\overrightarrow a = \left( { - 2;0;1} \right),\) \(\overrightarrow b = \left( {1;2; - 1} \right),\) \(\overrightarrow c = \left( {0;3; - 4} \right)\). Tính tọa độ vectơ \(\overrightarrow u = 2\overrightarrow a - \overrightarrow b + 3\overrightarrow c .\)
\(\begin{array}{l}\overrightarrow u = 2\overrightarrow a - \overrightarrow b + 3\overrightarrow c \\\,\,\,\, = 2.\left( { - 2;0;1} \right) - \left( {1;2; - 1} \right) + 3\left( {0;3; - 4} \right)\\\,\,\,\, = \left( { - 4;0;2} \right) - \left( {1;2; - 1} \right) + \left( {0;9; - 12} \right)\\\,\,\,\, = \left( { - 5;7; - 9} \right)\end{array}\)
Cho \(f\left( x \right)\) là hàm liên tục trên \(\mathbb{R}\) thỏa mãn \(f\left( 1 \right) = 1\) và \(\int\limits_0^1 {f\left( t \right)dt} = \frac{1}{2}\). Tính \(I = \int\limits_0^{\frac{\pi }{2}} {\sin 2x.f'\left( {\sin x} \right)dx} .\)
Ta có: \(I = \int\limits_0^{\frac{\pi }{2}} {\sin 2x.f'\left( {\sin x} \right)dx} \)
\(= 2\int\limits_0^{\frac{\pi }{2}} {\sin x.\cos x.f'\left( {\sin x} \right)dx} \).
Đặt \(t = \sin x \Rightarrow dt = \cos xdx.\)
Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 0\\x = \frac{\pi }{2} \Rightarrow t = 1\end{array} \right.\).
Khi đó ta có: \(I = 2\int\limits_0^1 {t.f'\left( t \right)dt} \).
Đặt \(\left\{ \begin{array}{l}u = t\\dv = f'\left( t \right)dt\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dt\\v = f\left( t \right)\end{array} \right.\).
\(\begin{array}{l} \Rightarrow I = 2.\left[ {\left. {\left( {t.f\left( t \right)} \right)} \right|_0^1 - \int\limits_0^1 {f\left( t \right)dt} } \right]\\\,\,\,\,\,\,\,\,\, = 2.\left( {f\left( 1 \right) - \int\limits_0^1 {f\left( t \right)dt} } \right)\\\,\,\,\,\,\,\,\,\, = 2.\left( {1 - \frac{1}{2}} \right) = 1.\end{array}\)
Cho phương trình \({z^2} + bz + c = 0\) ẩn z và b, c là tham số thuộc tập số thực. Biết phương trình nhận \(z = 1 + i\) là một nghiệm. Tính \(T = b + c.\)
Vì \(z = 1 + i\) là một nghiệm của phương trình \({z^2} + bz + c = 0\) nên ta có:
\(\begin{array}{l}\,\,\,\,\,\,{\left( {1 + i} \right)^2} + b\left( {1 + i} \right) + c = 0\\ \Leftrightarrow 2i + b + bi + c = 0\\ \Leftrightarrow b + c + \left( {b + 2} \right)i = 0\\ \Leftrightarrow \left\{ \begin{array}{l}b + c = 0\\b + 2 = 0\end{array} \right.\end{array}\)
Vậy \(T = b + c = 0\).
Trong không gian Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng \(d:\frac{{x - 2}}{2} = \frac{{y - 3}}{3} = \frac{{z + 4}}{{ - 5}}\) và \(d':\frac{{x + 1}}{3} = \frac{{y - 4}}{{ - 2}} = \frac{{z - 4}}{{ - 1}}.\)
Gọi \(\Delta \) là đường thẳng cần tìm.
Gọi \(M\left( {2a + 2;3a + 3; - 5a - 4} \right) = \Delta \cap d,\) \(N\left( {3b - 1; - 2b + 4; - b + 4} \right) = \Delta \cap d'\).
Ta có: \(\overrightarrow {MN} = \left( {3b - 2a - 3; - 2b - 3a + 1; - b + 5a + 8} \right)\).
Đường thẳng d có 1 VTCP là \(\overrightarrow {{u_d}} = \left( {2;3; - 5} \right)\), đường thẳng d’ có 1 VTCP là \(\overrightarrow {{u_{d'}}} = \left( {3; - 2; - 1} \right)\).
Vì \(\left\{ \begin{array}{l}MN \bot d\\MN \bot d'\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\overrightarrow {MN} .\overrightarrow {{u_d}} = 0\\\overrightarrow {MN} .\overrightarrow {{u_{d'}}} = 0\end{array} \right.\)
\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}2\left( {3b - 2a - 3} \right) + 3\left( { - 2b - 3a + 1} \right) \\- 5\left( { - b + 5a + 8} \right) = 0\\3\left( {3b - 2a - 3} \right) - 2\left( { - 2b - 3a + 1} \right) \\- 1\left( { - b + 5a + 8} \right) = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}5b - 38a - 43 = 0\\14b - 5a - 19 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 1\\b = 1\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}M\left( {0;0;1} \right)\\N\left( {2;2;3} \right)\end{array} \right. \\\Rightarrow \overrightarrow {MN} = \left( {2;2;2} \right)\parallel \left( {1;1;1} \right)\end{array}\)
Vậy phương trình đường thẳng \(\Delta \) là: \(\Delta :\frac{x}{1} = \frac{y}{1} = \frac{{z - 1}}{1}.\)