Đề thi HK2 môn Toán 12 năm 2021 - Trường THPT Phú Nhuận

Đề thi HK2 môn Toán 12 năm 2021 - Trường THPT Phú Nhuận

  • Hocon247

  • 40 câu hỏi

  • 60 phút

  • 200 lượt thi

  • Trung bình

Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com

Câu 1: Trắc nghiệm ID: 248167

Viết công thức tính diện tích hình phẳng được giới hạn bởi đồ thị các hàm số \(y = f\left( x \right),\) \(y = g\left( x \right)\) và các đường thẳng \(x = a,\,\,x = b\,\,\left( {a < b} \right)\).

Xem đáp án

Diện tích hình phẳng được giới hạn bởi đồ thị các hàm số \(y = f\left( x \right),\) \(y = g\left( x \right)\)và các đường thẳng \(x = a,\,\,x = b\,\,\left( {a < b} \right)\) là: \(S = \int\limits_a^b {\left| {f\left( x \right) - g\left( x \right)} \right|dx} \).

Câu 2: Trắc nghiệm ID: 248168

Trong không gian Oxyz, tìm một vectơ chỉ phương của đường thẳng d: \(\frac{{x - 4}}{7} = \frac{{y - 5}}{4} = \frac{{z + 7}}{{ - 5}}\)

Xem đáp án

Đường thẳng \(d:\frac{{x - 4}}{7} = \frac{{y - 5}}{4} = \frac{{z + 7}}{{ - 5}}\) có 1 VTCP là \(\left( {7;4; - 5} \right).\)

Dựa vào các đáp án ta thấy vectơ \(\overrightarrow u  = \left( {14;8; - 10} \right)\) cùng phương với vectơ \(\left( {7;4; - 5} \right)\) nên cũng là 1 VTCP của đường thẳng d.

Câu 3: Trắc nghiệm ID: 248169

Tìm mô đun của số phức \(z = 5 - 4i\)

Xem đáp án

\(\left| {\overrightarrow z } \right| = \sqrt {{5^2} + {{\left( { - 4} \right)}^2}}  = \sqrt {41} .\)

Câu 5: Trắc nghiệm ID: 248171

Trong không gian Oxyz, mặt cầu \(\left( S \right):{\left( {x + 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 2} \right)^2} = 9\) có tâm và bán kính lần lượt là

Xem đáp án

Mặt cầu \(\left( S \right):\,\,{\left( {x + 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 2} \right)^2} = 9\) có tâm \(I\left( { - 1;3;2} \right)\) và bán kính \(R = \sqrt 9  = 3.\)

Câu 6: Trắc nghiệm ID: 248172

Tìm số phức liên hợp của số phức \(z = 1 - 2i\)

Xem đáp án

\(z = 1 - 2i \Rightarrow \overline z  = 1 + 2i.\)

Câu 7: Trắc nghiệm ID: 248173

Trong không gian Oxyz, cho hai điểm \(A\left( { - 1;2;3} \right)\) và \(B\left( {3;0; - 2} \right)\). Tìm tọa độ của vectơ \(\overrightarrow {AB} .\)

Xem đáp án

Ta có: \(\left\{ \begin{array}{l}A\left( { - 1;2;3} \right)\\B\left( {3;0; - 2} \right)\end{array} \right. \Rightarrow \overrightarrow {AB}  = \left( {4; - 2; - 5} \right).\)

Câu 8: Trắc nghiệm ID: 248174

Trong không gian Oxyz, mặt phẳng \(\left( P \right)\) đi qua điểm \(A\left( {1;2;0} \right)\) và vuông góc với đường thẳng \(d:\frac{{x + 1}}{2} = \frac{y}{1} = \frac{{z - 1}}{{ - 1}}\) có phương trình là

Xem đáp án

Đường thẳng d có 1 VTCP là: \(\overrightarrow u \left( {2;1; - 1} \right)\).

Vì \(d \bot \left( P \right)\) nên mặt phẳng (P) có 1 VTPT là: \(\overrightarrow {{n_P}}  = \overrightarrow u  = \left( {2;1; - 1} \right)\).

Mặt phẳng (P) đi qua \(A\left( {1;2;0} \right)\) và có 1 VTPT \(\overrightarrow {{n_P}} \left( {2;1; - 1} \right)\) là: \(2\left( {x - 1} \right) + 1\left( {y - 2} \right) - 1\left( {z - 0} \right) = 0\)\( \Leftrightarrow 2x + y - z - 4 = 0\).

Câu 9: Trắc nghiệm ID: 248175

Họ nguyên hàm của hàm số \(f\left( x \right) = 4{x^3}\) là

Xem đáp án

\(f\left( x \right) = 4{x^3} \Rightarrow F\left( x \right) = {x^4} + C.\)

Câu 10: Trắc nghiệm ID: 248176

Công thức nguyên hàm nào sau đây đúng?

Xem đáp án

\(\begin{array}{l}\int {{e^x}dx = {e^x} + C} \\\int {dx = x + C} \\\int {\frac{1}{x}dx = \ln \left| x \right| + C} \\\int {\cos xdx = \sin x + C} \end{array}\)

Câu 12: Trắc nghiệm ID: 248178

Trong không gian Oxyz, điểm \(M\left( {3;4; - 2} \right)\) thuộc mặt phẳng nào trong các mặt phẳng sau?

Xem đáp án

\(3 + 4 - 7 = 0\) \( \Rightarrow M\left( {3;4; - 2} \right) \in \left( R \right):x + y - 7 = 0\)

Câu 13: Trắc nghiệm ID: 248179

Trong không gian Oxyz, phương trình nào dưới đây là phương trình mặt cầu tâm \(I\left( {1;0; - 3} \right)\)và bán kính \(R = 3\)?

Xem đáp án

Phương trình mặt cầu tìm \(I\left( {1;0; - 3} \right)\), bán kính R = 3 là: \({\left( {x - 1} \right)^2} + {y^2} + {\left( {z + 3} \right)^2} = 9.\)

Câu 15: Trắc nghiệm ID: 248181

Nghiệm của phương trình \(\left( {3 + i} \right)z + \left( {4 - 5i} \right) = 6 - 3i\) là

Xem đáp án

\(\begin{array}{l}\,\,\,\,\,\left( {3 + i} \right)z + \left( {4 - 5i} \right) = 6 - 3i\\ \Leftrightarrow \left( {3 + i} \right)z = 6 - 3i - \left( {4 - 5i} \right)\\ \Leftrightarrow \left( {3 + i} \right)z = 2 + 2i\\ \Leftrightarrow z = \frac{{2 + 2i}}{{3 + i}} = \frac{4}{5} + \frac{2}{5}i\end{array}\)

Câu 16: Trắc nghiệm ID: 248182

Trong không gian Oxyz, mặt phẳng đi qua tâm của mặt cầu \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {z^2} = 12\) và song song với mặt phẳng \(\left( {Oxz} \right)\)có phương trình là

Xem đáp án

Mặt cầu \({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {z^2} = 12\) có tâm \(I\left( {1; - 2;0} \right)\).

Mặt phẳng cần tìm song song với mặt phẳng (Oxz) nên có 1 VTPT là \(\overrightarrow j  = \left( {0;1;0} \right)\).

Vậy phương trình mặt phẳng cần tìm là: \(1\left( {y + 2} \right) = 0 \Leftrightarrow y + 2 = 0.\)

Câu 17: Trắc nghiệm ID: 248183

Tính diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = {x^2} - 2x\) và trục hoành.

Xem đáp án

Xét phương trình hoành độ giao điểm: \({x^2} - 2x = 0 \Rightarrow \left[ \begin{array}{l}x = 0\\x = 2\end{array} \right.\).

Diện tích hình phẳng cần tính là: \(S = \int\limits_0^2 {\left| {{x^2} - 2x} \right|dx}  =  - \int\limits_0^2 {\left( {{x^2} - 2x} \right)dx}  = \frac{4}{3}.\)

Câu 19: Trắc nghiệm ID: 248185

Gọi \({z_1},\,\,{z_2}\) là hai nghiệm phức của phương trình \({z^2} - 6z + 14 = 0\). Tính \(S = \left| {{z_1}} \right| + \left| {{z_2}} \right|.\)

Xem đáp án

\(\begin{array}{l}{z^2} - 6z + 14 = 0 \Leftrightarrow \left[ \begin{array}{l}{z_1} = 3 + \sqrt 5 i\\{z_2} = 3 - \sqrt 5 i\end{array} \right.\\ \Rightarrow \left| {{z_1}} \right| = \left| {{z_2}} \right| = \sqrt {9 + 5}  = \sqrt {14} \\ \Rightarrow \left| {{z_1}} \right| + \left| {{z_2}} \right| = 2\sqrt {14} .\end{array}\)

Câu 20: Trắc nghiệm ID: 248186

Trong không gian Oxyz, tính khoảng cách giữa hai mặt phẳng \(\left( P \right):\,\,2x + 2y - z - 11 = 0\) và \(\left( Q \right):\,\,2x + 2y - z + 4 = 0\).

Xem đáp án

\(d\left( {\left( P \right),\left( Q \right)} \right) = \frac{{\left| { - 11 - 4} \right|}}{{\sqrt {{2^2} + {2^2} + {{\left( { - 1} \right)}^2}} }} = 5.\)

Câu 21: Trắc nghiệm ID: 248187

Cho \(z = 1 + \sqrt 3 i\). Tìm số phức nghịch đảo của số phức \(z\).

Xem đáp án

\(\frac{1}{z} = \frac{1}{{1 + \sqrt 3 i}} = \frac{1}{4} - \frac{{\sqrt 3 }}{4}i.\)

Câu 22: Trắc nghiệm ID: 248188

Tính tích phân \(I = \int\limits_0^{2019} {{e^{2x}}dx} .\)

Xem đáp án

\(\int\limits_0^{2019} {{e^{2x}}dx}  = \left. {\frac{1}{2}{e^{2x}}} \right|_0^{2019}\)\( = \frac{1}{2}\left( {{e^{4038}} - {e^0}} \right) = \frac{1}{2}\left( {{e^{4038}} - 1} \right).\)

Câu 23: Trắc nghiệm ID: 248189

Cho hàm số \(f\left( x \right)\) thỏa mãn \(\int\limits_0^{2019} {f\left( x \right)dx}  = 1\). Tính tích phân \(I = \int\limits_0^1 {f\left( {2019x} \right)dx} .\)

Xem đáp án

Đặt \(t = 2019x \Rightarrow dt = 2019dx.\)

Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 0\\x = 1 \Rightarrow t = 2019\end{array} \right.\).

Khi đó ta có: \(I = \int\limits_0^1 {f\left( {2019x} \right)dx}  = \int\limits_0^{2019} {f\left( t \right)\frac{{dt}}{{2019}}} \)\( = \frac{1}{{2019}}.\int\limits_0^{2019} {f\left( t \right)dt} \)\( = \frac{1}{{2019}}.\int\limits_0^{2019} {f\left( x \right)dx}  = \frac{1}{{2019}}.\)

Câu 24: Trắc nghiệm ID: 248190

Trong không gian Oxyz, mặt phẳng \(\left( P \right)\) đi qua 2 điểm \(A\left( {1;2;0} \right)\), \(B\left( {2;3;1} \right)\) và song song với trục \(Oz\) có phương trình là

Xem đáp án

Gọi \(\overrightarrow {{n_P}} \) là 1 VTPT của \(\left( P \right)\).

Vì \(A,\,\,B \in \left( P \right) \Rightarrow AB \subset \left( P \right)\) \( \Rightarrow \overrightarrow {{n_P}} .\overrightarrow {AB}  = 0\,\,\,\left( 1 \right)\).

Lại có \(\left( P \right)\parallel Oz\) nên \(\overrightarrow {{n_{  P}}} .\overrightarrow k  = 0\,\,\,\left( 2 \right)\) với \(\overrightarrow k \left( {0;0;1} \right)\).

Từ (1) và (2) \( \Rightarrow \overrightarrow {{n_P}}  = \left[ {\overrightarrow {AB} ;\overrightarrow k } \right].\)

Ta có: \(\overrightarrow {AB}  = \left( {1;1;1} \right);\,\,\,\,\overrightarrow k  = \left( {0;0;1} \right) \)

\(\Rightarrow \left[ {\overrightarrow {AB} ;\overrightarrow k } \right] = \left( {1; - 1;0} \right).\)

Suy ra mặt phẳng (P) có 1 VTPT là \(\overrightarrow {{n_P}}  = \left( {1; - 1;0} \right)\).

Vậy phương trình mặt phẳng (P) là: \(1.\left( {x - 1} \right) - 1.\left( {y - 2} \right) = 0\)\( \Leftrightarrow x - y + 1 = 0\)

Câu 25: Trắc nghiệm ID: 248191

Cho \(\int\limits_0^4 {f\left( x \right)dx}  = 10\) và \(\int\limits_4^8 {f\left( x \right)dx}  = 6\). Tính \(\int\limits_0^8 {f\left( x \right)dx} .\)

Xem đáp án

\(\int\limits_0^8 {f\left( x \right)dx} \)\( = \int\limits_0^4 {f\left( x \right)dx}  + \int\limits_4^8 {f\left( x \right)dx} \) \( = 10 + 6 = 16\)

Câu 26: Trắc nghiệm ID: 248192

Họ nguyên hàm của hàm số \(y = x\sin x\) là

Xem đáp án

Đặt \(\left\{ \begin{array}{l}u = x \Rightarrow du = dx\\dv = \sin xdx \Rightarrow v =  - \cos x\end{array} \right..\)

\(\begin{array}{l} \Rightarrow \int {x\sin xdx =  - x\cos x - \int { - \cos xdx} } \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, =  - x\cos x + \int {\cos xdx} \\\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\, =  - x\cos x + \sin x + C\end{array}\)

Câu 27: Trắc nghiệm ID: 248193

Cho số phức \(z = 2 + 5i\). Điểm biểu diễn số phức z  trong mặt phẳng Oxy có tọa độ là

Xem đáp án

Điểm biểu diễn số phức \(z = 2 + 5i\) trong mặt phẳng tọa độ là \(M\left( {2;5} \right)\).

Câu 28: Trắc nghiệm ID: 248194

Cho \(\int\limits_{ - 1}^2 {f\left( x \right)dx}  = 3\) và \(\int\limits_2^{ - 1} {g\left( x \right)dx}  = 1\). Tính \(I = \int\limits_{ - 1}^2 {\left[ {x + 2f\left( x \right) - 3g\left( x \right)} \right]dx} \)

Xem đáp án

\(\begin{array}{l}I = \int\limits_{ - 1}^2 {\left[ {x + 2f\left( x \right) - 3g\left( x \right)} \right]dx} \\\,\,\,\, = \int\limits_{ - 1}^2 {xdx}  + 2\int\limits_{ - 1}^2 {f\left( x \right)dx}  - 3\int\limits_{ - 1}^2 {g\left( x \right)dx} \\\,\,\,\, = \left. {\frac{{{x^2}}}{2}} \right|_{ - 1}^2 + 2\int\limits_{ - 1}^2 {f\left( x \right)dx}  + 3\int\limits_2^{ - 1} {g\left( x \right)dx} \\\,\,\,\, = \frac{{{2^2}}}{2} - \frac{{{{\left( { - 1} \right)}^2}}}{2} + 2.3 + 3.1 = \frac{{21}}{2}.\end{array}\)

Câu 29: Trắc nghiệm ID: 248195

Trong không gian Oxyz, cho \(d:\frac{{x - 1}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 3}}{2}\). Đường thẳng nào sau đây song song với d?

Xem đáp án

Đường thẳng d có 1 VTCP là \(\overrightarrow u \left( {2; - 1;2} \right)\).

Dễ thấy đáp án D đường thẳng \(\Delta \) có 1 VTCP là \(\overrightarrow {{u_4}}  = \left( {2;1; - 2} \right)\) không cùng phương với vectơ \(\overrightarrow u \left( {2; - 1;2} \right)\) nên ta loại đáp án D.

Chọn \(A\left( {1; - 1;3} \right) \in d\), thay tọa độ điểm A vào đáp án A ta có: \(\frac{{1 - 2}}{{ - 2}} = \frac{{ - 1}}{1} = \frac{{3 - 1}}{{ - 2}}\) (vô lí) \( \Rightarrow A \notin \Delta \).

Vậy đường thẳng ở đáp án A song song với đường thẳng d.

Câu 30: Trắc nghiệm ID: 248196

Tìm họ nguyên hàm của hàm số \(f\left( x \right) = {e^{5x - 3}}.\)

Xem đáp án

\(\int {{e^{5x - 3}}dx}  = \frac{1}{5}{e^{5x - 3}} + C.\)

Câu 31: Trắc nghiệm ID: 248197

Tìm các số thực \(x,y\) thỏa mãn: \(x + 2y + \left( {2x - 2y} \right)i = 7 - 4i\)

Xem đáp án

\(\begin{array}{l}\,\,\,\,\,\,\,x + 2y + \left( {2x - 2y} \right)i = 7 - 4i\\ \Leftrightarrow \left\{ \begin{array}{l}x + 2y = 7\\2x - 2y =  - 4\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 1\\y = 3\end{array} \right.\end{array}\)

Câu 32: Trắc nghiệm ID: 248198

Trong không gian Oxyz, phương trình đường thẳng đi qua hai điểm \(M\left( { - 1;0;0} \right)\) và \(N\left( {0;1;2} \right)\) là

Xem đáp án

Đường thẳng đi qua điểm M, N nhận \(\overrightarrow {MN}  = \left( {1;1;2} \right)\) là 1 VTCP.

Vậy phương trình đường thẳng MN là: \(\frac{{x + 1}}{1} = \frac{y}{1} = \frac{z}{2}.\)

Câu 33: Trắc nghiệm ID: 248199

Trong mặt phẳng tọa độ Oxy, cho điểm \(A\left( { - 3;4} \right)\) biểu diễn cho số phức z. Tìm tọa độ điểm B biểu diễn cho số phức \(\omega  = i\overline z \).

Xem đáp án

Điểm A(-3;4) biểu diễn cho số phức z \( \Rightarrow z =  - 3 + 4i\) \( \Rightarrow \overline z  =  - 3 - 4i\).

\( \Rightarrow \omega  = i\overline z  = i\left( { - 3 - 4i} \right) = 4 - 3i.\)

Vậy điểm biểu diễn số phức w là \(B\left( {4; - 3} \right).\)

Câu 34: Trắc nghiệm ID: 248200

Cho số phức \(z = 1 + 3i\). Tìm phần thực của số phức \({z^2}\).

Xem đáp án

\(z = 1 + 3i \Rightarrow {z^2} = {\left( {1 + 3i} \right)^2} =  - 8 + 6i\)

Vậy phần thực của số phức \({z^2}\) là -8.

Câu 35: Trắc nghiệm ID: 248201

Cho tích phân \(I = \int\limits_3^5 {\frac{1}{{2x - 1}}dx}  = a\ln 3 + b\ln 5\,\,\,\left( {a,b \in \mathbb{Q}} \right)\). Tính \(S = a + b.\)

Xem đáp án

\(\begin{array}{l}I = \int\limits_3^5 {\frac{1}{{2x - 1}}dx}  = \left. {\frac{1}{2}\ln \left| {2x - 1} \right|} \right|_3^5\\\,\,\,\, = \frac{1}{2}\left( {\ln \left| {2.5 - 1} \right| - \ln \left| {2.3 - 1} \right|} \right)\\\,\,\,\, = \frac{1}{2}.\left( {\ln 9 - \ln 5} \right) = \ln 3 - \frac{1}{2}\ln 5\\ \Rightarrow a = 1;\,\,b =  - \frac{1}{2}.\end{array}\)

Vậy \(S = a + b = 1 - \frac{1}{2} = \frac{1}{2}.\)

Câu 36: Trắc nghiệm ID: 248202

Tính \(I = \int\limits_0^1 {\left( {2x - 5} \right)dx} .\)

Xem đáp án

\(I = \int\limits_0^1 {\left( {2x - 5} \right)dx} \)\( = \left. {\left( {{x^2} - 5x} \right)} \right|_0^1 = \left( {1 - 5} \right) - 0 =  - 4\)

Câu 37: Trắc nghiệm ID: 248203

Trong không gian Oxyz, cho ba vectơ\(\overrightarrow a  = \left( { - 2;0;1} \right),\) \(\overrightarrow b  = \left( {1;2; - 1} \right),\) \(\overrightarrow c  = \left( {0;3; - 4} \right)\). Tính tọa độ vectơ \(\overrightarrow u  = 2\overrightarrow a  - \overrightarrow b  + 3\overrightarrow c .\)

Xem đáp án

\(\begin{array}{l}\overrightarrow u  = 2\overrightarrow a  - \overrightarrow b  + 3\overrightarrow c \\\,\,\,\, = 2.\left( { - 2;0;1} \right) - \left( {1;2; - 1} \right) + 3\left( {0;3; - 4} \right)\\\,\,\,\, = \left( { - 4;0;2} \right) - \left( {1;2; - 1} \right) + \left( {0;9; - 12} \right)\\\,\,\,\, = \left( { - 5;7; - 9} \right)\end{array}\)

Câu 38: Trắc nghiệm ID: 248204

Cho \(f\left( x \right)\) là hàm liên tục trên \(\mathbb{R}\) thỏa mãn \(f\left( 1 \right) = 1\) và \(\int\limits_0^1 {f\left( t \right)dt}  = \frac{1}{2}\).  Tính \(I = \int\limits_0^{\frac{\pi }{2}} {\sin 2x.f'\left( {\sin x} \right)dx} .\)

Xem đáp án

Ta có: \(I = \int\limits_0^{\frac{\pi }{2}} {\sin 2x.f'\left( {\sin x} \right)dx} \)

\(= 2\int\limits_0^{\frac{\pi }{2}} {\sin x.\cos x.f'\left( {\sin x} \right)dx} \).

Đặt \(t = \sin x \Rightarrow dt = \cos xdx.\)

Đổi cận: \(\left\{ \begin{array}{l}x = 0 \Rightarrow t = 0\\x = \frac{\pi }{2} \Rightarrow t = 1\end{array} \right.\).

Khi đó ta có: \(I = 2\int\limits_0^1 {t.f'\left( t \right)dt} \).

Đặt \(\left\{ \begin{array}{l}u = t\\dv = f'\left( t \right)dt\end{array} \right. \Rightarrow \left\{ \begin{array}{l}du = dt\\v = f\left( t \right)\end{array} \right.\).

\(\begin{array}{l} \Rightarrow I = 2.\left[ {\left. {\left( {t.f\left( t \right)} \right)} \right|_0^1 - \int\limits_0^1 {f\left( t \right)dt} } \right]\\\,\,\,\,\,\,\,\,\, = 2.\left( {f\left( 1 \right) - \int\limits_0^1 {f\left( t \right)dt} } \right)\\\,\,\,\,\,\,\,\,\, = 2.\left( {1 - \frac{1}{2}} \right) = 1.\end{array}\)

Câu 39: Trắc nghiệm ID: 248205

Cho phương trình \({z^2} + bz + c = 0\) ẩn z và b, c là tham số thuộc tập số thực. Biết phương trình nhận \(z = 1 + i\) là một nghiệm. Tính \(T = b + c.\)

Xem đáp án

Vì \(z = 1 + i\) là một nghiệm của phương trình \({z^2} + bz + c = 0\) nên ta có:

\(\begin{array}{l}\,\,\,\,\,\,{\left( {1 + i} \right)^2} + b\left( {1 + i} \right) + c = 0\\ \Leftrightarrow 2i + b + bi + c = 0\\ \Leftrightarrow b + c + \left( {b + 2} \right)i = 0\\ \Leftrightarrow \left\{ \begin{array}{l}b + c = 0\\b + 2 = 0\end{array} \right.\end{array}\)

Vậy \(T = b + c = 0\).

Câu 40: Trắc nghiệm ID: 248206

Trong không gian Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng \(d:\frac{{x - 2}}{2} = \frac{{y - 3}}{3} = \frac{{z + 4}}{{ - 5}}\) và \(d':\frac{{x + 1}}{3} = \frac{{y - 4}}{{ - 2}} = \frac{{z - 4}}{{ - 1}}.\)

Xem đáp án

Gọi \(\Delta \) là đường thẳng cần tìm.

Gọi \(M\left( {2a + 2;3a + 3; - 5a - 4} \right) = \Delta  \cap d,\) \(N\left( {3b - 1; - 2b + 4; - b + 4} \right) = \Delta  \cap d'\).

Ta có: \(\overrightarrow {MN}  = \left( {3b - 2a - 3; - 2b - 3a + 1; - b + 5a + 8} \right)\).

Đường thẳng d có 1 VTCP là \(\overrightarrow {{u_d}}  = \left( {2;3; - 5} \right)\), đường thẳng d’ có 1 VTCP là \(\overrightarrow {{u_{d'}}}  = \left( {3; - 2; - 1} \right)\).

Vì \(\left\{ \begin{array}{l}MN \bot d\\MN \bot d'\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\overrightarrow {MN} .\overrightarrow {{u_d}}  = 0\\\overrightarrow {MN} .\overrightarrow {{u_{d'}}}  = 0\end{array} \right.\)

\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}2\left( {3b - 2a - 3} \right) + 3\left( { - 2b - 3a + 1} \right) \\- 5\left( { - b + 5a + 8} \right) = 0\\3\left( {3b - 2a - 3} \right) - 2\left( { - 2b - 3a + 1} \right) \\- 1\left( { - b + 5a + 8} \right) = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}5b - 38a - 43 = 0\\14b - 5a - 19 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  - 1\\b = 1\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}M\left( {0;0;1} \right)\\N\left( {2;2;3} \right)\end{array} \right. \\\Rightarrow \overrightarrow {MN}  = \left( {2;2;2} \right)\parallel \left( {1;1;1} \right)\end{array}\)

Vậy phương trình đường thẳng \(\Delta \) là: \(\Delta :\frac{x}{1} = \frac{y}{1} = \frac{{z - 1}}{1}.\)

Bắt đầu thi để xem toàn bộ câu hỏi trong đề

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »