Trong không gian Oxyz, viết phương trình đường vuông góc chung của hai đường thẳng \(d:\frac{{x - 2}}{2} = \frac{{y - 3}}{3} = \frac{{z + 4}}{{ - 5}}\) và \(d':\frac{{x + 1}}{3} = \frac{{y - 4}}{{ - 2}} = \frac{{z - 4}}{{ - 1}}.\)
A. \(\frac{x}{2} = \frac{{y - 2}}{3} = \frac{{z - 3}}{{ - 1}}\)
B. \(\frac{x}{2} = \frac{{y - 2}}{3} = \frac{{z - 3}}{{ - 1}}\)
C. \(\frac{{x - 2}}{2} = \frac{{y - 2}}{3} = \frac{{z - 3}}{4}\)
D. \(\frac{{x - 2}}{2} = \frac{{y + 2}}{2} = \frac{{z - 3}}{2}\)
Lời giải của giáo viên
ToanVN.com
Gọi \(\Delta \) là đường thẳng cần tìm.
Gọi \(M\left( {2a + 2;3a + 3; - 5a - 4} \right) = \Delta \cap d,\) \(N\left( {3b - 1; - 2b + 4; - b + 4} \right) = \Delta \cap d'\).
Ta có: \(\overrightarrow {MN} = \left( {3b - 2a - 3; - 2b - 3a + 1; - b + 5a + 8} \right)\).
Đường thẳng d có 1 VTCP là \(\overrightarrow {{u_d}} = \left( {2;3; - 5} \right)\), đường thẳng d’ có 1 VTCP là \(\overrightarrow {{u_{d'}}} = \left( {3; - 2; - 1} \right)\).
Vì \(\left\{ \begin{array}{l}MN \bot d\\MN \bot d'\end{array} \right. \Rightarrow \left\{ \begin{array}{l}\overrightarrow {MN} .\overrightarrow {{u_d}} = 0\\\overrightarrow {MN} .\overrightarrow {{u_{d'}}} = 0\end{array} \right.\)
\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}2\left( {3b - 2a - 3} \right) + 3\left( { - 2b - 3a + 1} \right) \\- 5\left( { - b + 5a + 8} \right) = 0\\3\left( {3b - 2a - 3} \right) - 2\left( { - 2b - 3a + 1} \right) \\- 1\left( { - b + 5a + 8} \right) = 0\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}5b - 38a - 43 = 0\\14b - 5a - 19 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 1\\b = 1\end{array} \right.\\ \Rightarrow \left\{ \begin{array}{l}M\left( {0;0;1} \right)\\N\left( {2;2;3} \right)\end{array} \right. \\\Rightarrow \overrightarrow {MN} = \left( {2;2;2} \right)\parallel \left( {1;1;1} \right)\end{array}\)
Vậy phương trình đường thẳng \(\Delta \) là: \(\Delta :\frac{x}{1} = \frac{y}{1} = \frac{{z - 1}}{1}.\)
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian Oxyz, điểm \(M\left( {3;4; - 2} \right)\) thuộc mặt phẳng nào trong các mặt phẳng sau?
Trong không gian Oxyz, phương trình đường thẳng đi qua hai điểm \(M\left( { - 1;0;0} \right)\) và \(N\left( {0;1;2} \right)\) là
Tính \(I = \int\limits_0^1 {\left( {2x - 5} \right)dx} .\)
Cho \(\int\limits_0^4 {f\left( x \right)dx} = 10\) và \(\int\limits_4^8 {f\left( x \right)dx} = 6\). Tính \(\int\limits_0^8 {f\left( x \right)dx} .\)
Trong không gian Oxyz, cho \(d:\frac{{x - 1}}{2} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 3}}{2}\). Đường thẳng nào sau đây song song với d?
Trong không gian Oxyz, mặt phẳng \(\left( P \right)\) đi qua điểm \(A\left( {1;2;0} \right)\) và vuông góc với đường thẳng \(d:\frac{{x + 1}}{2} = \frac{y}{1} = \frac{{z - 1}}{{ - 1}}\) có phương trình là
Trong không gian Oxyz, cho hai điểm \(A\left( { - 1;2;3} \right)\) và \(B\left( {3;0; - 2} \right)\). Tìm tọa độ của vectơ \(\overrightarrow {AB} .\)
Viết công thức tính diện tích hình phẳng được giới hạn bởi đồ thị các hàm số \(y = f\left( x \right),\) \(y = g\left( x \right)\) và các đường thẳng \(x = a,\,\,x = b\,\,\left( {a < b} \right)\).
Trong không gian Oxyz, cho \(\overrightarrow a = \left( { - 1;3;2} \right)\) và \(\overrightarrow b = \left( { - 3; - 1;2} \right)\). Tính \(\overrightarrow a .\overrightarrow b .\)
Cho \(F\left( x \right)\) là một nguyên hàm của\(f\left( x \right)\) trên \(\mathbb{R}\) và \(F\left( 0 \right) = 2,\) \(F\left( 3 \right) = 7\). Tính \(\int\limits_0^3 {f\left( x \right)} dx.\)
Trong không gian Oxyz, cho ba vectơ\(\overrightarrow a = \left( { - 2;0;1} \right),\) \(\overrightarrow b = \left( {1;2; - 1} \right),\) \(\overrightarrow c = \left( {0;3; - 4} \right)\). Tính tọa độ vectơ \(\overrightarrow u = 2\overrightarrow a - \overrightarrow b + 3\overrightarrow c .\)
Trong không gian Oxyz, tìm một vectơ chỉ phương của đường thẳng d: \(\frac{{x - 4}}{7} = \frac{{y - 5}}{4} = \frac{{z + 7}}{{ - 5}}\)
Gọi \({z_1},\,\,{z_2}\) là hai nghiệm phức của phương trình \({z^2} - 6z + 14 = 0\). Tính \(S = \left| {{z_1}} \right| + \left| {{z_2}} \right|.\)
Cho số phức \(z = 1 - 2i\). Tìm phần ảo của số phức \(z\).