Đề thi HK2 môn Toán 12 năm 2021-2022 - Trường THPT Nguyễn Tất Thành
Đề thi HK2 môn Toán 12 năm 2021-2022 - Trường THPT Nguyễn Tất Thành
-
Hocon247
-
40 câu hỏi
-
60 phút
-
88 lượt thi
-
Trung bình
Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com
Tập xác định \(D\) của hàm số sau \(y = {\left( {{x^3} - 8} \right)^{\frac{\pi }{2}}}\) là:
Vì \(\frac{\pi }{2} \notin \mathbb{Z}\) nên hàm số \(y = {\left( {{x^3} - 8} \right)^{\frac{\pi }{2}}}\) xác định \( \Leftrightarrow {x^3} - 8 > 0 \Leftrightarrow x > 2\).
Vậy tập xác định của hàm số là \(D = \left( {2; + \infty } \right)\).
Chọn D.
Cho hàm số sau \(y = f\left( x \right)\) có đồ thị như hình vẽ:
Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
Dựa vào đồ thị hàm số ta thấy hàm số đã cho nghịch biến trên \(\left( { - \infty ; - 1} \right)\) và \(\left( {0;1} \right)\).
Chọn D.
Cho hàm số sau \(y = f\left( x \right)\) có bảng biến thiên như sau:
Giá trị cực tiểu của hàm số đã cho bằng:
Dựa vào BBT ta thấy hàm số có giá trị cực tiểu bằng \( - 2\).
Chọn D.
Chú ý: Phân biệt điểm cực tiểu và giá trị cực tiểu của hàm số.
Cho \(a,\,\,b\) là các số dương. Mệnh đề nào sau đây đúng?
Các đáp án trên chỉ có đáp án A đúng: \(\log \left( {ab} \right) = \log a + \log b\).
Chọn A.
Đường cong trong hình vẽ sau đây là đồ thị của hàm số nào dưới đây:
Dựa vào đồ thị hàm số ta thấy: Đồ thị hàm số có TCN \(y = 2\) và TCĐ \(x = - 1\).
Do đó loại đáp án C và D.
Dễ thấy hàm số ở đáp án A: \(y = \frac{{2x + 2}}{{x + 1}} = \frac{{2\left( {x + 1} \right)}}{{x + 1}} = 2\) là hàm hằng nên không có đường tiệm cân.
Chọn B.
Trong không gian với hệ tọa độ \(Oxyz\), cho ba điểm là \(A\left( {2;1; - 1} \right)\), \(B\left( { - 1;0;4} \right)\), \(C\left( {0; - 2; - 1} \right)\). Phương trình nào dưới đây là phương trình của mặt phẳng đi qua \(A\) và vuông góc \(BC\).
Ta có: \(\overrightarrow {BC} = \left( {1; - 2; - 5} \right)\) là 1 VTPT của mặt phẳng đi qua \(A\) và vuông góc \(BC\).
Vậy phương trình mặt phẳng đi qua \(A\) và vuông góc \(BC\) là:
\(1\left( {x - 2} \right) - 2\left( {y - 1} \right) - 5\left( {z + 1} \right) = 0\)\( \Leftrightarrow x - 2y - 5z - 5 = 0\).
Chọn B.
Một cấp số nhân hữu hạn có công bội \(q = - 3\), số hạng thứ ba bằng \(27\) và số hạng cuối bằng \(1594323\). Hỏi cấp số nhân đó có bao nhiêu số hạng?
Ta có: \({u_3} = {u_1}.{q^2}\)\( \Rightarrow 27 = {u_1}.{\left( { - 3} \right)^2}\) \( \Leftrightarrow {u_1} = 3\).
Giả sử số hạng thứ \(n\) là \({u_n} = 1594323\), khi đó ta có:
\(3.{\left( { - 3} \right)^{n - 1}} = 1594323\) \( \Leftrightarrow {\left( { - 3} \right)^{n - 1}} = 531441\) \( \Leftrightarrow n - 1 = 12\) \( \Leftrightarrow n = 13\).
Vậy \(1594323\) là số hạng thứ 13 hay cấp số nhân trên có 13 số hạng.
Chọn B.
Cho biết mệnh đề nào sau đây sai?
Dễ thấy \(\int {{e^x}dx} = {e^x} + C\), \(\int {\left( {{x^2} - 1} \right)dx} = \frac{{{x^3}}}{3} - x + C\) là các mệnh đề đúng.
\(\int {\ln xdx} = \frac{1}{x} + C\) là mệnh đề sai (Lẫn lộn giữa nguyên hàm và đạo hàm).
Cách làm đúng: \(\int {\ln xdx} \)\( = x.\ln x - \int {x.\frac{1}{x}dx} + C\) \( = x.\ln x - x + C\)
Chọn B.
Cho biết \(\int\limits_0^1 {f\left( x \right)dx} = - 2\) và \(\int\limits_0^1 {g\left( x \right)dx} = - 5\), khi đó \(\int\limits_0^1 {\left[ {f\left( x \right) + 3g\left( x \right)} \right]dx} \) bằng:
\(\int\limits_0^1 {\left[ {f\left( x \right) + 3g\left( x \right)} \right]dx} \)\( = \int\limits_0^1 {f\left( x \right)dx} + 3\int\limits_0^1 {g\left( x \right)dx} \) \( = - 2 + 3.\left( { - 5} \right) = - 17\).
Chọn C.
Phần thực và phần ảo của số phức sau \(z = \left( {1 + 2i} \right)i\) lần lượt là:
\(z = \left( {1 + 2i} \right)i = i + 2{i^2}\)\( = i - 2 = - 2 + i\).
Vậy số phức đó có phần thực là \( - 2\) và phần ảo là \(1\).
Chọn B.
Cho biết thể tích khối lập phương có cạnh \(2a\) bằng:
Thể tích khối lập phương là: \(V = {\left( {2a} \right)^3} = 8{a^3}\).
Chọn A.
Cho khối nón có độ dài đường sinh bằng \(2a\) và bán kính đáy bằng \(a\). Hãy tính thể tích của khối nón đã cho.
Chiều cao của khối nón là: \(h = \sqrt {{l^2} - {r^2}} = \sqrt {4{a^2} - {a^2}} = a\sqrt 3 \).
Vậy thể tích khối nón là \(V = \frac{1}{3}\pi {r^2}h\)\( = \frac{1}{3}\pi .{a^2}.a\sqrt 3 = \frac{{\sqrt 3 \pi {a^3}}}{3}\)
Chọn A.
Trong không gian \(Oxyz\), cho vectơ \(\overrightarrow a \) thỏa mãn \(\overrightarrow a = 2\overrightarrow i + \overrightarrow k - 3\overrightarrow j \). Cho biết tọa độ của vectơ \(\overrightarrow a \) là:
\(\overrightarrow a = 2\overrightarrow i + \overrightarrow k - 3\overrightarrow j \)\( \Rightarrow \overrightarrow a = \left( {2; - 3;1} \right)\)
Chọn B.
Trong không gian \(Oxyz\), cho đường thẳng \(d:\,\,\frac{{x - 2}}{3} = \frac{{y + 1}}{{ - 1}} = \frac{{z + 3}}{2}\). Điểm nào dưới đây không thuộc đường thẳng \(d\)?
Điểm \(M\left( { - 2;1;3} \right)\) không thuộc đường thẳng \(d\) vì \(\frac{{ - 2 - 2}}{3} \ne \frac{{1 + 1}}{{ - 1}} \ne \frac{{3 + 3}}{2}\).
Chọn D.
Khai triển nhị thức sau \({\left( {x + 2} \right)^{n + 5}}\,\,\left( {n \in \mathbb{N}} \right)\) có tất cả \(2019\) số hạng. Tìm \(n\).
Khai triển nhị thức \({\left( {x + 2} \right)^{n + 5}}\,\,\left( {n \in \mathbb{N}} \right)\) có tất cả \(2019\) số hạng nên \(n + 5 = 2019 + 1\)\( \Leftrightarrow n = 2015\).
Chọn D.
Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:
Số nghiệm thực của phương trình \(f\left( x \right) + 1 = 0\) là:
Ta có: \(f\left( x \right) + 1 = 0 \Leftrightarrow f\left( x \right) = - 1\). Khi đó số nghiệm của phương trình là số giao điểm của đồ thị hàm số \(y = f\left( x \right)\) và đường thẳng \(y = - 1\).
Dựa vào BBT ta thấy đường thẳng \(y = - 1\) cắt đồ thị hàm số tại 2 điểm phân biệt.
Vậy phương trình \(f\left( x \right) + 1 = 0\) có 2 nghiệm phân biệt.
Chọn D.
Điểm biểu diễn của số phức \(z = 2019 + bi\) (\(b\) là số thực tùy ý) nằm trên đường thẳng có phương trình là:
Điểm biểu diễn của số phức \(z = 2019 + bi\) (\(b\) là số thực tùy ý) là \(M\left( {2019;b} \right)\).
Điểm \(M\left( {2019;b} \right)\) luôn thuộc đường thẳng \(x = 2019\) vói mọi \(b\) tùy ý.
Chọn B.
Cho biết có bao nhiêu loại khối đa diện mà mỗi mặt của nó là một tam giác đều.
Các khối đa diện mà mỗi mặt của nó là một tam giác đều là:
- Khối \(\left\{ {3;3} \right\}\): Tứ diện đều.
- Khối \(\left\{ {3;4} \right\}\): Bát diện đều.
- Khối \(\left\{ {3;5} \right\}\): Khối 20 mặt đều.
Vậy có 3 khối đa diện mà mỗi mặt của nó là một tam giác đều.
Chọn B.
Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số sau \(y = \frac{{x - 2}}{{{x^2} - 4}}\) là:
TXĐ: \(D = \mathbb{R}\backslash \left\{ { - 2;2} \right\}\).
Ta có: \(y = \frac{{x - 2}}{{{x^2} - 4}} = \frac{1}{{x + 2}}\).
Đồ thị hàm số có TCN \(y = 0\) và TCĐ \(x = - 2\).
Chọn C
Gọi \(M,\,\,m\) lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(f\left( x \right) = \frac{{x + 1}}{{x - 1}}\) trên đoạn \(\left[ {3;5} \right]\). Hãy tính \(M - m\).
TXĐ: \(D = \mathbb{R}\backslash \left\{ 1 \right\}\).
Ta có: \(y' = \frac{{ - 2}}{{{{\left( {x - 1} \right)}^2}}} < 0\,\,\forall x \in D\). Do đó \(y' < 0\,\,\,\forall x \in \left[ {3;5} \right]\).
Khi đó hàm số đã cho nghịch biến trên \(\left( {3;5} \right)\).
\( \Rightarrow M = \mathop {\max }\limits_{\left[ {3;5} \right]} y = y\left( 3 \right) = 2\), \(m = \mathop {\min }\limits_{\left[ {3;5} \right]} y = y\left( 5 \right) = \frac{3}{2}\).
Vậy \(M - m = 2 - \frac{3}{2} = \frac{1}{2}.\)
Chọn B.
Cho hàm số \(f\left( x \right)\) có \(f'\left( x \right) = {x^{2017}}.{\left( {x - 1} \right)^{2018}}.{\left( {x + 1} \right)^{2019}},\)\(\forall x \in \mathbb{R}\). Cho biết hàm số đã cho có bao nhiêu điểm cực trị.
Ta có:
\(f'\left( x \right) = {x^{2017}}.{\left( {x - 1} \right)^{2018}}.{\left( {x + 1} \right)^{2019}}\) với \(\forall x \in \mathbb{R}\)
\(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 1\\x = - 1\end{array} \right.\)
Trong đó:
+ \(x = 0\) là nghiệm bội \(2017\) (là cực trị).
+ \(x = 1\) là nghiệm bội \(2018\) (không là cực trị).
+ \(x = - 1\) là nghiệm bội \(2019\) (là cực trị).
Vậy hàm số đã cho có 2 điểm cực trị.
Chọn C.
Cho hàm số \(y = {\log _3}\left( {2x - 3} \right)\). Hãy tính đạo hàm của hàm số đã cho tại điểm \(x = 2\).
TXĐ: \(D = \left( {\frac{3}{2}; + \infty } \right)\).
Ta có: \(y' = \frac{{\left( {2x - 3} \right)'}}{{\left( {2x - 3} \right)\ln 3}} = \frac{2}{{\left( {2x - 3} \right)\ln 3}}\).
Với \(x = 2 \in D\) thì \(y'\left( 2 \right) = \frac{2}{{\left( {2.2 - 3} \right)\ln 3}} = \frac{2}{{\ln 3}}\).
Chọn C.
Cho phương trình \({\left( {\sqrt {2 - \sqrt 3 } } \right)^x} + {\left( {\sqrt {2 + \sqrt 3 } } \right)^x} = 4\). Gọi \({x_1},\,\,{x_2}\) \(\left( {{x_1} < {x_2}} \right)\) là hai nghiệm thực của phương trình. Khẳng định nào sau đây là đúng?
Ta có:
\(\begin{array}{l}{\left( {\sqrt {2 - \sqrt 3 } } \right)^x}.{\left( {\sqrt {2 + \sqrt 3 } } \right)^x} \\= {\left( {\sqrt {2 - \sqrt 3 } .\sqrt {2 + \sqrt 3 } } \right)^x}\\ = {\left( {\sqrt {\left( {2 - \sqrt 3 } \right)\left( {2 + \sqrt 3 } \right)} } \right)^x} \\= {\left( {\sqrt {{2^2} - {{\left( {\sqrt 3 } \right)}^2}} } \right)^x} = 1\end{array}\)
Do đó nếu đặt \({\left( {\sqrt {2 + \sqrt 3 } } \right)^x} = t\,\,\left( {t > 0} \right)\) thì \({\left( {\sqrt {2 - \sqrt 3 } } \right)^x} = \frac{1}{t}\), khi đó phương trình trở thành:
\(\frac{1}{t} + t = 4 \Leftrightarrow {t^2} - 4t + 1 = 0\) \( \Leftrightarrow \left[ \begin{array}{l}t = 2 + \sqrt 3 \\t = 2 - \sqrt 3 \end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}{\left( {\sqrt {2 + \sqrt 3 } } \right)^x} = 2 + \sqrt 3 \\{\left( {\sqrt {2 + \sqrt 3 } } \right)^x} = 2 - \sqrt 3 \end{array} \right.\)
\( \Leftrightarrow \left[ \begin{array}{l}{\left( {2 + \sqrt 3 } \right)^{\frac{1}{2}x}} = 2 + \sqrt 3 \\{\left( {2 + \sqrt 3 } \right)^{\frac{1}{2}x}} = {\left( {2 + \sqrt 3 } \right)^{ - 1}}\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}\frac{1}{2}x = 1\\\frac{1}{2}x = - 1\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}x = 2\\x = - 2\end{array} \right.\).
Do đó phương trình có 2 nghiệm \({x_1} = - 2,\,\,{x_2} = 2\).
Vậy \({x_1} + {x_2} = 0\).
Chọn A.
Tìm tập nghiệm \(S\) của bất phương trình sau \({3^{x + 1}} - \frac{1}{3} > 0\).
\(\begin{array}{l}{3^{x + 1}} - \frac{1}{3} > 0 \Leftrightarrow {3^{x + 1}} > \frac{1}{3}\\ \Leftrightarrow {3^{x + 1}} > {3^{ - 1}} \Leftrightarrow x + 1 > - 1\\ \Leftrightarrow x > - 2\end{array}\)
Vậy tập nghiệm của bất phương trình là \(S = \left( { - 2; + \infty } \right)\).
Chọn C.
Cho \(\int\limits_0^1 {\frac{{xdx}}{{{{\left( {x + 3} \right)}^2}}}} = a + b\ln 3 + c\ln 4\) với \(a,\,\,b,\,\,c\) là các số thực. Hãy tính giá trị của \(a + b + c\).
\(\begin{array}{l}\int\limits_0^1 {\frac{{xdx}}{{{{\left( {x + 3} \right)}^2}}}} = \int\limits_0^1 {\frac{{x + 3 - 3}}{{{{\left( {x + 3} \right)}^2}}}dx} \\ = \int\limits_0^1 {\frac{{dx}}{{x + 3}}} - 3\int\limits_0^1 {\frac{{dx}}{{{{\left( {x + 3} \right)}^2}}}} \\ = \left. {\left( {\ln \left| {x + 3} \right| + \frac{3}{{x + 3}}} \right)} \right|_0^1\\ = \ln 4 + \frac{3}{4} - \ln 3 - 1\\ = - \frac{1}{4} - \ln 3 + \ln 4\end{array}\)
\( \Rightarrow a = - \frac{1}{4},\,\,b = - 1,\,\,c = 1\)
Vậy \(a + b + c = - \frac{1}{4} - 1 + 1 = - \frac{1}{4}\).
Chọn B.
Cho số phức \(z = a + bi\,\,\left( {a,\,\,b \in \mathbb{R}} \right)\) thỏa mãn \(a + \left( {b - 1} \right)i = \frac{{1 + 3i}}{{1 - 2i}}\). Giá trị nào dưới đây là môđun của \(z\).
Ta có:
\(\begin{array}{l}a + \left( {b - 1} \right)i = \frac{{1 + 3i}}{{1 - 2i}}\\ \Leftrightarrow a + bi - i = \frac{{1 + 3i}}{{1 - 2i}}\\ \Leftrightarrow a + bi = \frac{{1 + 3i}}{{1 - 2i}} + i\\ \Leftrightarrow z = \frac{{1 + 3i + i - 2{i^2}}}{{1 - 2i}}\\ \Leftrightarrow z = \frac{{1 + 4i + 2}}{{1 - 2i}}\\ \Leftrightarrow z = \frac{{3 + 4i}}{{1 - 2i}} = - 1 + 2i\end{array}\)
Vậy môđun của số phức \(z\) là \(\left| z \right| = \sqrt {{{\left( { - 1} \right)}^2} + {2^2}} = \sqrt 5 \).
Chọn D.
Cho hình chóp \(S.ABCD\) có đáy là hình thoi cạnh \(a\), \(\angle BAD = {60^0}\), cạnh bên \(SA = a\) và \(SA\) vuông góc với mặt phẳng đáy. Hãy tính khoảng cách từ \(B\) đến mặt phẳng \(\left( {SCD} \right)\).
Ta có \(AB\parallel CD\,\,\left( {gt} \right) \Rightarrow AB\parallel \left( {SCD} \right)\) \( \Rightarrow d\left( {B;\left( {SCD} \right)} \right) = d\left( {A;\left( {SCD} \right)} \right)\).
Trong \(\left( {ABCD} \right)\) kẻ \(AH \bot CD\).
Vì \(\angle BAD = {60^0} \Rightarrow \angle ADC = {120^0}\) nên điểm \(H\) nằm ngoài đoạn thẳng \(CD\).
Trong \(\left( {SAH} \right)\) dựng \(AK \bot SH\,\,\left( {H \in SH} \right)\) ta có:
\(\left\{ \begin{array}{l}CD \bot AH\\CD \bot SA\,\,\left( {SA \bot \left( {ABCD} \right)} \right)\end{array} \right.\) \( \Rightarrow CD \bot \left( {SAH} \right) \Rightarrow CD \bot AK\).
\(\left\{ \begin{array}{l}AK \bot SH\\AK \bot CD\end{array} \right. \Rightarrow AK \bot \left( {SCD} \right)\)\( \Rightarrow d\left( {A;\left( {SCD} \right)} \right) = AK\).
Xét tam giác vuông \(AHD\) có \(\angle ADH = {180^0} - \angle ADC = {60^0}\), \(AD = a\) \( \Rightarrow AH = AD.sin{60^0} = \frac{{a\sqrt 3 }}{2}\).
Vì \(SA \bot \left( {ABCD} \right)\) nên \(SA \bot AH\), suy ra tam giác \(SAH\) vuông tại \(A\), áp dụng hệ thức lượng trong tam giác vuông ta có: \(AK = \frac{{SA.AH}}{{\sqrt {S{A^2} + A{H^2}} }}\) \( = \frac{{a.\frac{{a\sqrt 3 }}{2}}}{{\sqrt {{a^2} + \frac{{3{a^2}}}{4}} }} = \frac{{a\sqrt {21} }}{7}\).
Vậy \(d\left( {B;\left( {SCD} \right)} \right) = \frac{{a\sqrt {21} }}{7}\).
Chọn A.
Cắt một hình trụ bởi mặt phẳng qua trục của nó, ta được thiết diện là một hình vuông có cạnh bằng \(3a\). Hãy tính diện tích toàn phần của hình trụ đã cho.
Gọi \(h\) và \(r\) lần lượt là chiều cao và bán kính đáy của hình trụ.
Cắt một hình trụ bởi mặt phẳng qua trục của nó, ta được thiết diện là một hình vuông có cạnh hình vuông bằng chiều cao hình trụ và gấp đôi bán kính đáy hình trụ, suy ra \(h = 2r = 3a \Rightarrow r = \frac{{3a}}{2}\).
Vậy diện tích toàn phần hình trụ là: \({S_{tp}} = 2\pi r\left( {r + h} \right)\)\( = 2\pi .\frac{{3a}}{2}\left( {\frac{{3a}}{2} + 3a} \right) = \frac{{27\pi {a^2}}}{2}\).
Chọn B.
Trong không gian \(Oxyz\), mặt cầu tâm \(I\left( {1;2; - 1} \right)\) và cắt mặt phẳng sau \(\left( P \right):\,\,2x - y + 2z - 1 = 0\) theo một đường tròn có bán kính bằng \(\sqrt 8 \) có phương trình là:
Ta có: \(d\left( {I;\left( P \right)} \right) = \frac{{\left| {2.1 - 2 + 2.\left( { - 1} \right) - 1} \right|}}{{\sqrt {{2^2} + {{\left( { - 1} \right)}^2} + {2^2}} }}\)\( = 1 = d\)
\( \Rightarrow \) Bán kính của mặt cầu là \(R = \sqrt {{r^2} + {d^2}} = \sqrt {8 + 1} = 3\).
Vậy phương trình mặt cầu cần tìm là: \({\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 1} \right)^2} = 9.\)
Chọn B.
Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) với \(A\left( {1; - 2;0} \right)\), \(B\left( {3;3;2} \right)\), \(C\left( { - 1;2;2} \right)\) và \(D\left( {3;3;1} \right)\). Độ dài đường cao của tứ diện \(ABCD\) hạ từ đỉnh \(D\) xuống mặt phẳng \(\left( {ABC} \right)\) bằng:
Ta có: \(\overrightarrow {AB} = \left( {2;5;2} \right),\,\,\overrightarrow {AC} = \left( { - 2;4;2} \right)\) \( \Rightarrow \left[ {\overrightarrow {AB} ;\overrightarrow {AC} } \right] = \left( {2; - 8;18} \right)\).
\( \Rightarrow \left( {ABC} \right)\) đi qua \(A\left( {1; - 2;0} \right)\) và nhận \(\overrightarrow n \left( {1; - 4;9} \right)\) là 1 VTPT. Khi đó phương trình mặt phẳng \(\left( P \right)\) là: \(1\left( {x - 1} \right) - 4\left( {y + 2} \right) + 9\left( {z - 0} \right) = 0\) \( \Leftrightarrow x - 4y + 9z - 9 = 0\).
Vậy độ dài đường cao của tứ diện \(ABCD\) hạ từ đỉnh \(D\) xuống mặt phẳng \(\left( {ABC} \right)\) là:
\(d\left( {D;\left( {ABC} \right)} \right) = \frac{{\left| {3 - 4.3 + 9.1 - 9} \right|}}{{\sqrt {{1^2} + {{\left( { - 4} \right)}^2} + {9^2}} }}\)\( = \frac{{9\sqrt 2 }}{{14}} = \frac{9}{{7\sqrt 2 }}\)
Chọn A.
Tìm giá trị lớn nhất của hàm số sau \(f\left( x \right) = {e^{x + 1}} - 2\) trên đoạn \(\left[ {0;3} \right]\).
TXĐ: \(D = \mathbb{R}\).
Ta có: \(f'\left( x \right) = {e^{x + 1}} > 0\,\,\forall x \in \left[ {0;3} \right]\), do đó hàm số đồng biến trên \(\left( {0;3} \right)\).
Vậy \(\mathop {\max }\limits_{\left[ {0;3} \right]} f\left( x \right) = f\left( 3 \right) = {e^4} - 2\).
Chọn A.
Hãy tìm tập hợp \(S\) tất cả các giá trị của tham số thực \(m\) để hàm số \(y = \frac{1}{3}{x^3} - \left( {m + 1} \right){x^2} + \left( {{m^2} + 2m} \right)x - 3\) nghịch biến trên khoảng \(\left( { - 1;1} \right)\).
TXĐ: \(D = \mathbb{R}\). Ta có: \(y' = {x^2} - 2\left( {m + 1} \right)x + {m^2} + 2m\).
Để hàm số nghịch biến trên khoảng \(\left( { - 1;1} \right)\) thì \(y' \le 0\,,\,\forall x \in \left( { - 1;1} \right)\)
\( \Leftrightarrow {x^2} - 2\left( {m + 1} \right)x + {m^2} + 2m \le 0\) với \(\forall x \in \left( { - 1;1} \right)\).
Đặt \(f\left( x \right) = {x^2} - 2\left( {m + 1} \right)x + {m^2} + 2m\).
Để \(f\left( x \right) \le 0\,\,\forall x \in \left( { - 1;1} \right)\) thì phương trình \(f\left( x \right) = 0\) phải có 2 nghiệm phân biệt \({x_1},\,\,{x_2}\) thỏa mãn \({x_1} \le - 1 < 1 \le {x_2}\). Khi đó ta có:
\(\left\{ \begin{array}{l}\Delta ' > 0\\{x_1} \le - 1 < {x_2}\\{x_1} < 1 \le {x_2}\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}{\left( {m + 1} \right)^2} - {m^2} - 2m > 0\\{x_1} + 1 \le 0 < {x_2} + 1\\{x_1} - 1 < 0 \le {x_2}\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}1 > 0\\\left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right) \le 0\\\left( {{x_1} - 1} \right)\left( {{x_2} - 1} \right) \le 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{x_1}{x_2} + \left( {{x_1} + {x_2}} \right) + 1 \le 0\\{x_1}{x_2} - \left( {{x_1} + {x_2}} \right) + 1 \le 0\end{array} \right.\,\,\,\left( * \right)\)
Áp dụng định lí Vi-ét ta có: \(\left\{ \begin{array}{l}{x_1} + {x_2} = 2\left( {m + 1} \right)\\{x_1}{x_2} = {m^2} + 2m\end{array} \right.\).
Khi đó \(\left( * \right) \Leftrightarrow \left\{ \begin{array}{l}{m^2} + 2m + 2\left( {m + 1} \right) + 1 \le 0\\{m^2} + 2m - 2\left( {m + 1} \right) + 1 \le 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l}{m^2} + 4m + 3 \le 0\\{m^2} - 1 \le 0\end{array} \right.\) \( \Leftrightarrow \left\{ \begin{array}{l} - 3 \le m \le - 1\\ - 1 \le m \le 1\end{array} \right. \Leftrightarrow m = - 1\).
Vậy \(S = \left\{ { - 1} \right\}.\)
Chọn C.
Cho hàm số \(y = f\left( x \right)\) có đồ thị là đường cong trong hình vẽ bên. Số nghiệm thực của phương trình sau \(f\left( {x + 2019} \right) = 1\) là:
Dựa vào đồ thị hàm số ta thấy: Đường thẳng \(y = 1\) cắt đồ thị hàm số \(y = f\left( x \right)\) tại 3 điểm phân biệt nên phương trình \(f\left( {x + 2019} \right) = 1\) có 3 nghiệm phân biệt \(\left[ \begin{array}{l}x + 2019 = a\\x + 2019 = b\\x + 2019 = c\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = a - 2019\\x = b - 2019\\x = c - 2019\end{array} \right.\).
Chọn C.
Cho hình phẳng \(D\) giới hạn bởi đường cong \(y = \sqrt {2 + \sin x} \), trục hoành và các đường thẳng \(x = 0\), \(x = \pi \). Khối tròn xoay \(D\) tạo thành khi quay \(D\) quanh trục hoành có thể tích \(V\) bằng bao nhiêu?
Xét phương trình hoành độ giao điểm: \(\sqrt {2 + \sin x} = 0 \Leftrightarrow \sin x = - 2\) (vô nghiệm).
Khi đó ta có khối tròn xoay \(D\) tạo thành khi quay \(D\) quanh trục hoành có thể tích \(V\) bằng:
\(\begin{array}{l}V = \pi \int\limits_0^\pi {\left( {2 + \sin x} \right)dx} \\ = \left. {\pi \left( {2x - \cos x} \right)} \right|_0^\pi \\ = \pi \left( {2\pi + 1 + 1} \right)\\ = 2\pi \left( {\pi + 1} \right)\end{array}\)
Chọn B.
Tính diện tích \(S\) của hình phẳng giới hạn bởi đồ thị của hai hàm số sau \(y = {x^3} - 3x + 2\) và \(y = x + 2\).
Xét phương trình hoành độ giao điểm: \({x^3} - 3x + 2 = x + 2\)\( \Leftrightarrow {x^3} - 4x = 0 \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = 2\\x = - 2\end{array} \right.\)
Khi đó diện tích \(S\) của hình phẳng giới hạn bởi đồ thị của hai hàm số \(y = {x^3} - 3x + 2\) và \(y = x + 2\) là:
\(\begin{array}{l}V = \int\limits_{ - 2}^2 {\left| {{x^3} - 4x} \right|dx} \\ = \int\limits_{ - 2}^0 {\left| {{x^3} - 4x} \right|dx} + \int\limits_0^2 {\left| {{x^3} - 4x} \right|dx} \\ = \left| {\int\limits_{ - 2}^0 {\left( {{x^3} - 4x} \right)dx} } \right| + \left| {\int\limits_0^2 {\left( {{x^3} - 4x} \right)dx} } \right|\\ = 4 + 4 = 8\end{array}\)
Chọn A.
Xét số phức thỏa \(\left| z \right| = 3\). Biết rằng tập hợp điểm biểu diễn số phức \(w = \overline z + i\) là một đường tròn. Tìm tọa độ tâm của đường tròn đó.
Vì \(\left| z \right| = 3\) nên \(\left| {\overline z } \right| = 3\). Mà \(w = \overline z + i \Rightarrow \overline z = w - i\).
Khi đó ta có: \(\left| {w - i} \right| = 3\).
Vậy tập tập hợp điểm biểu diễn số phức \(w = \overline z + i\) là một đường tròn có tâm là điểm biểu diễn số phức \(i\), chính là điểm \(\left( {0;1} \right)\).
Chọn A.
Cho hình chóp \(S.ABC\) có \(SA\) vuông góc với mặt phẳng \(\left( {ABC} \right)\), tam giác \(ABC\) vuông tại \(B\). Biết \(SA = 2a\), \(AB = a\), \(BC = a\sqrt 3 \). Tính bán kính \(R\) của mặt cầu ngoại tiếp hình chóp đã cho.
Gọi \(O,\,\,I\) lần lượt là trung điểm của \(AC\) và \(SC\). Khi đó \(OI\) là đường trung bình của tam giác \(SAC\) nên \(OI\parallel SA\). Mà \(SA \bot \left( {ABC} \right) \Rightarrow OI \bot \left( {ABC} \right)\).
Tam giác \(ABC\) vuông tại \(B\) nên \(O\) là tâm đường tròn ngoại tiếp tam giác \(ABC\), mà \(OI \bot \left( {ABC} \right)\) nên \(OI\) chính là trục của \(\left( {ABC} \right)\), suy ra \(IA = IB = IC\,\,\,\left( 1 \right)\).
Lại có \(SA \bot \left( {ABC} \right)\) nên \(SA \bot AC\), do đó tam giác \(SAC\) vuông tại \(A\) nên \(I\) chính là tâm đường tròn ngoại tiếp tam giác \(SAC\), suy ra \(IS = IA = IC\,\,\,\left( 2 \right)\).
Từ (1) và (2) ta có \(IA = IB = IC = IS\), hay \(I\) là tâm mặt cầu ngoại tiếp chóp \(S.ABC\), và bán kính mặt cầu là \(R = IS = \frac{1}{2}SC\).
Áp dụng định lí Pytago trong tam giác vuông \(ABC\) ta có: \(AC = \sqrt {A{B^2} + B{C^2}} = 2a\).
Áp dụng định lí Pytago trong tam giác vuông \(SAC\) ta có: \(SC = \sqrt {S{A^2} + A{C^2}} = 2a\sqrt 2 \).
Vậy \(R = \frac{1}{2}SC = a\sqrt 2 \).
Chọn A.
Cho hình lăng trụ đứng \(ABC.A'B'C'\) có đáy \(ABC\) là tam giác vuông tại \(C\), biết \(AB = 2a\), \(AC = a\), \(BC' = 2a\). Hãy tính thể tích \(V\) của khối lăng trụ đã cho.
Tam giác \(ABC\) vuông tại \(C\) nên áp dụng định lí Pytago ta có: \(BC = \sqrt {A{B^2} - A{C^2}} = a\sqrt 3 \).
\( \Rightarrow {S_{\Delta ABC}} = \frac{1}{2}AC.BC = \frac{1}{2}.a.a\sqrt 3 = \frac{{{a^2}\sqrt 3 }}{2}\).
Ta có: \(CC' \bot \left( {ABC} \right)\) nên \(CC' \bot BC\), suy ra tam giác \(BCC'\) vuông tại \(C\). Áp dụng định lí Pytago ta có: \(CC' = \sqrt {BC{'^2} - B{C^2}} = a\).
Vậy \({V_{ABC.A'B'C'}} = CC'.{S_{\Delta ABC}} = a.\frac{{{a^2}\sqrt 3 }}{2} = \frac{{{a^3}\sqrt 3 }}{2}\).
Chọn C.
Trong không gian \(Oxyz\), cho ba đường thẳng \(\left( {{d_1}} \right):\,\,\frac{{x - 3}}{2} = \frac{{y + 1}}{1} = \frac{{z - 2}}{{ - 2}}\), \(\left( {{d_2}} \right):\,\,\frac{{x + 1}}{3} = \frac{y}{{ - 2}} = \frac{{z + 4}}{{ - 1}}\) và \(\left( {{d_3}} \right):\,\,\frac{{x + 3}}{4} = \frac{{y - 2}}{{ - 1}} = \frac{z}{6}\). Đường thẳng song song \({d_3}\), cắt \({d_1}\) và \({d_2}\) có phương trình là:
Gọi \(\overrightarrow {{u_3}} = \left( {4; - 1;6} \right)\) là 1 VTCP của đường thẳng \({d_3}\).
Gọi đường thẳng cần tìm là \(d\). Vì \(d\parallel {d_3}\) nên \(d\) nhận \(\overrightarrow {{u_3}} = \left( {4; - 1;6} \right)\) là 1 VTCP.
Gọi \(\left\{ \begin{array}{l}A = d \cap {d_1}\\B = d \cap {d_2}\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}A\left( {3 + 2{t_1}; - 1 + {t_1};2 - 2{t_1}} \right)\\B\left( { - 1 + 3{t_2}; - 2{t_2}; - 4 - {t_2}} \right)\end{array} \right.\)
Khi đó ta có: \(\overrightarrow {AB} = \left( {3{t_2} - 2{t_1} - 4; - 2{t_2} - {t_1} + 1; - {t_2} + 2{t_1} - 6} \right)\) cũng là 1 VTCP của đường thẳng \(d\).
\( \Rightarrow \overrightarrow {AB} \) và \(\overrightarrow {{u_3}} \) là 2 vectơ cùng phương.
\(\begin{array}{l} \Leftrightarrow \frac{{3{t_2} - 2{t_1} - 4}}{4} = \frac{{ - 2{t_2} - {t_1} + 1}}{{ - 1}} = \frac{{ - {t_2} + 2{t_1} - 6}}{6}\\ \Leftrightarrow \left\{ \begin{array}{l} - 3{t_2} + 2{t_1} + 4 = - 8{t_2} - 4{t_1} + 4\\{t_2} - 2{t_1} + 6 = - 12{t_2} - 6{t_1} + 6\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}5{t_2} + 6{t_1} = 0\\13{t_2} + 4{t_1} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{t_1} = 0\\{t_2} = 0\end{array} \right.\\ \Rightarrow A\left( {3; - 1;2} \right);\,\,B\left( { - 1;0; - 4} \right)\end{array}\)
Vậy phương trình đường thẳng \(d\) đi qua \(A\left( {3; - 1;2} \right)\), nhận \(\overrightarrow {{u_3}} \left( {4; - 1;6} \right)\parallel \overrightarrow u \left( { - 4;1; - 6} \right)\) có phương trình là:
\(\frac{{x - 3}}{{ - 4}} = \frac{{y + 1}}{1} = \frac{{z - 2}}{{ - 6}}\)
Chọn B.
Cho hàm số \(y = f\left( x \right)\) có đồ thị \(y = f'\left( x \right)\) như hình bên. Hỏi hàm số \(y = f\left( {3 - 2x} \right) + 2019\) nghịch biến trên khoảng nào sau đây?
Đặt \(g\left( x \right) = f\left( {3 - 2x} \right) + 2019\), khi đó ta có: \(g'\left( x \right) = - 2f'\left( {3 - 2x} \right)\).
Xét \(g'\left( x \right) < 0 \Leftrightarrow - 2f'\left( {3 - 2x} \right) < 0\)\( \Leftrightarrow f'\left( {3 - 2x} \right) > 0\)
\( \Leftrightarrow \left[ \begin{array}{l} - 1 < 3 - 2x < 1\\3 - 2x > 4\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l} - 4 < - 2x < - 2\\2x < - 1\end{array} \right.\) \( \Leftrightarrow \left[ \begin{array}{l}1 < x < 2\\x < - \frac{1}{2}\end{array} \right.\)
Vậy hàm số \(g\left( x \right) = f\left( {3 - 2x} \right) + 2019\) nghịch biến trên \(\left( {1;2} \right)\) và \(\left( { - \infty ; - \frac{1}{2}} \right)\).
Chọn A.