Câu hỏi Đáp án 3 năm trước 55

Trong không gian \(Oxyz\), cho ba đường thẳng \(\left( {{d_1}} \right):\,\,\frac{{x - 3}}{2} = \frac{{y + 1}}{1} = \frac{{z - 2}}{{ - 2}}\), \(\left( {{d_2}} \right):\,\,\frac{{x + 1}}{3} = \frac{y}{{ - 2}} = \frac{{z + 4}}{{ - 1}}\) và \(\left( {{d_3}} \right):\,\,\frac{{x + 3}}{4} = \frac{{y - 2}}{{ - 1}} = \frac{z}{6}\). Đường thẳng song song \({d_3}\), cắt \({d_1}\) và \({d_2}\) có phương trình là:

A. \(\frac{{x - 3}}{4} = \frac{{y + 1}}{1} = \frac{{z - 2}}{6}\) 

B. \(\frac{{x - 3}}{{ - 4}} = \frac{{y + 1}}{1} = \frac{{z - 2}}{{ - 6}}\) 

Đáp án chính xác ✅

C. \(\frac{{x + 1}}{4} = \frac{y}{{ - 1}} = \frac{{z - 4}}{6}\) 

D. \(\frac{{x - 1}}{4} = \frac{y}{{ - 1}} = \frac{{z + 4}}{6}\) 

Lời giải của giáo viên

verified ToanVN.com

Gọi \(\overrightarrow {{u_3}}  = \left( {4; - 1;6} \right)\) là 1 VTCP của đường thẳng \({d_3}\).

Gọi đường thẳng cần tìm là \(d\). Vì \(d\parallel {d_3}\) nên \(d\) nhận \(\overrightarrow {{u_3}}  = \left( {4; - 1;6} \right)\) là 1 VTCP.

Gọi \(\left\{ \begin{array}{l}A = d \cap {d_1}\\B = d \cap {d_2}\end{array} \right.\)\( \Rightarrow \left\{ \begin{array}{l}A\left( {3 + 2{t_1}; - 1 + {t_1};2 - 2{t_1}} \right)\\B\left( { - 1 + 3{t_2}; - 2{t_2}; - 4 - {t_2}} \right)\end{array} \right.\)

Khi đó ta có: \(\overrightarrow {AB}  = \left( {3{t_2} - 2{t_1} - 4; - 2{t_2} - {t_1} + 1; - {t_2} + 2{t_1} - 6} \right)\) cũng là 1 VTCP của đường thẳng \(d\).

\( \Rightarrow \overrightarrow {AB} \) và \(\overrightarrow {{u_3}} \) là 2 vectơ cùng phương.

\(\begin{array}{l} \Leftrightarrow \frac{{3{t_2} - 2{t_1} - 4}}{4} = \frac{{ - 2{t_2} - {t_1} + 1}}{{ - 1}} = \frac{{ - {t_2} + 2{t_1} - 6}}{6}\\ \Leftrightarrow \left\{ \begin{array}{l} - 3{t_2} + 2{t_1} + 4 =  - 8{t_2} - 4{t_1} + 4\\{t_2} - 2{t_1} + 6 =  - 12{t_2} - 6{t_1} + 6\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}5{t_2} + 6{t_1} = 0\\13{t_2} + 4{t_1} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{t_1} = 0\\{t_2} = 0\end{array} \right.\\ \Rightarrow A\left( {3; - 1;2} \right);\,\,B\left( { - 1;0; - 4} \right)\end{array}\)

Vậy phương trình đường thẳng \(d\) đi qua \(A\left( {3; - 1;2} \right)\), nhận \(\overrightarrow {{u_3}} \left( {4; - 1;6} \right)\parallel \overrightarrow u \left( { - 4;1; - 6} \right)\) có phương trình là:

\(\frac{{x - 3}}{{ - 4}} = \frac{{y + 1}}{1} = \frac{{z - 2}}{{ - 6}}\)

Chọn B.

CÂU HỎI CÙNG CHỦ ĐỀ

Câu 1: Trắc nghiệm

Cho hình chóp \(S.ABCD\) có đáy là hình thoi cạnh \(a\), \(\angle BAD = {60^0}\), cạnh bên \(SA = a\) và \(SA\) vuông góc với mặt phẳng đáy. Hãy tính khoảng cách từ \(B\) đến mặt phẳng \(\left( {SCD} \right)\).

Xem lời giải » 3 năm trước 70
Câu 2: Trắc nghiệm

Cho hình chóp \(S.ABC\) có \(SA\) vuông góc với mặt phẳng \(\left( {ABC} \right)\), tam giác \(ABC\) vuông tại \(B\). Biết \(SA = 2a\), \(AB = a\), \(BC = a\sqrt 3 \). Tính bán kính \(R\) của mặt cầu ngoại tiếp hình chóp đã cho.

Xem lời giải » 3 năm trước 67
Câu 3: Trắc nghiệm

Trong không gian \(Oxyz\), cho vectơ \(\overrightarrow a \) thỏa mãn \(\overrightarrow a  = 2\overrightarrow i  + \overrightarrow k  - 3\overrightarrow j \). Cho biết tọa độ của vectơ \(\overrightarrow a \) là: 

Xem lời giải » 3 năm trước 67
Câu 4: Trắc nghiệm

Cho biết thể tích khối lập phương có cạnh \(2a\) bằng:

Xem lời giải » 3 năm trước 67
Câu 5: Trắc nghiệm

Trong không gian \(Oxyz\), mặt cầu tâm \(I\left( {1;2; - 1} \right)\) và cắt mặt phẳng sau \(\left( P \right):\,\,2x - y + 2z - 1 = 0\) theo một đường tròn có bán kính bằng \(\sqrt 8 \) có phương trình là:

Xem lời giải » 3 năm trước 67
Câu 6: Trắc nghiệm

Trong không gian \(Oxyz\), cho đường thẳng \(d:\,\,\frac{{x - 2}}{3} = \frac{{y + 1}}{{ - 1}} = \frac{{z + 3}}{2}\). Điểm nào dưới đây không thuộc đường thẳng \(d\)?

Xem lời giải » 3 năm trước 66
Câu 7: Trắc nghiệm

Cho \(a,\,\,b\) là các số dương. Mệnh đề nào sau đây đúng?

Xem lời giải » 3 năm trước 66
Câu 8: Trắc nghiệm

Trong không gian \(Oxyz\), cho tứ diện \(ABCD\) với \(A\left( {1; - 2;0} \right)\), \(B\left( {3;3;2} \right)\), \(C\left( { - 1;2;2} \right)\) và \(D\left( {3;3;1} \right)\). Độ dài đường cao của tứ diện \(ABCD\) hạ từ đỉnh \(D\) xuống mặt phẳng \(\left( {ABC} \right)\) bằng: 

Xem lời giải » 3 năm trước 66
Câu 9: Trắc nghiệm

Cho hàm số sau \(y = f\left( x \right)\) có đồ thị như hình vẽ:

Hàm số đã cho nghịch biến trên khoảng nào dưới đây?

Xem lời giải » 3 năm trước 64
Câu 10: Trắc nghiệm

Một cấp số nhân hữu hạn có công bội \(q =  - 3\), số hạng thứ ba bằng \(27\) và số hạng cuối bằng \(1594323\). Hỏi cấp số nhân đó có bao nhiêu số hạng? 

Xem lời giải » 3 năm trước 64
Câu 11: Trắc nghiệm

Tổng số tiệm cận ngang và tiệm cận đứng của đồ thị hàm số sau \(y = \frac{{x - 2}}{{{x^2} - 4}}\) là: 

Xem lời giải » 3 năm trước 63
Câu 12: Trắc nghiệm

Tìm giá trị lớn nhất của hàm số sau \(f\left( x \right) = {e^{x + 1}} - 2\) trên đoạn \(\left[ {0;3} \right]\).

Xem lời giải » 3 năm trước 62
Câu 13: Trắc nghiệm

Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên như sau:

Số nghiệm thực của phương trình \(f\left( x \right) + 1 = 0\) là:

Xem lời giải » 3 năm trước 62
Câu 14: Trắc nghiệm

Cho hình phẳng \(D\) giới hạn bởi đường cong \(y = \sqrt {2 + \sin x} \), trục hoành và các đường thẳng \(x = 0\), \(x = \pi \). Khối tròn xoay \(D\) tạo thành khi quay \(D\) quanh trục hoành có thể tích \(V\) bằng bao nhiêu?

Xem lời giải » 3 năm trước 62
Câu 15: Trắc nghiệm

Cho hàm số \(y = {\log _3}\left( {2x - 3} \right)\). Hãy tính đạo hàm của hàm số đã cho tại điểm \(x = 2\).  

Xem lời giải » 3 năm trước 62

❓ Câu hỏi mới nhất

Xem thêm »
Xem thêm »