Đề thi HK2 môn Toán 11 năm 2021-2022 - Trường THPT Nhân Chính
-
Hocon247
-
40 câu hỏi
-
60 phút
-
44 lượt thi
-
Trung bình
Tham gia [ Hs Hocon247.com ] - Cộng Đồng Luyện Thi Trực Tuyến để được học tập những kiến thức bổ ích từ HocOn247.com
Tính giới hạn \(\mathop {\lim }\limits_{x \to 2} \left( {x - 2} \right)\).
\(\mathop {\lim }\limits_{x \to 2} \left( {x - 2} \right) = 2 - 2 = 0\).
Chọn D.
Tính giới hạn \(\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + x - 2}}{{x - 1}}.\)
\(\begin{array}{l}\mathop {\lim }\limits_{x \to 1} \frac{{{x^2} + x - 2}}{{x - 1}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {x - 1} \right)\left( {x + 2} \right)}}{{x - 1}}\\ = \mathop {\lim }\limits_{x \to 1} \left( {x + 2} \right) = 3\end{array}\).
Chọn C.
\(\mathop {\lim }\limits_{x \to 1} \frac{{x + \sqrt {{x^2} + 1} }}{{x + 1}} = a + b\sqrt 2 \,\,\left( {a,b \in \mathbb{Q}} \right).\) Hãy tính \(a + b\).
Hàm số \(y = \frac{{x + \sqrt {{x^2} + 1} }}{{x + 1}}\) có TXĐ: \(D = \mathbb{R}\backslash \left\{ { - 1} \right\}\)
\( \Rightarrow \) Hàm số liên tục tại \(x = 1\).
\(\begin{array}{l} \Rightarrow \mathop {\lim }\limits_{x \to 1} \frac{{x + \sqrt {{x^2} + 1} }}{{x + 1}}\\ = \frac{{1 + \sqrt {{1^2} + 1} }}{{1 + 1}}\\ = \frac{{1 + \sqrt 2 }}{2} = \frac{1}{2} + \frac{1}{2}\sqrt 2 \\ \Rightarrow \left\{ \begin{array}{l}a = \frac{1}{2}\\b = \frac{1}{2}\end{array} \right.\\ \Rightarrow a + b = \frac{1}{2} + \frac{1}{2} = 1\end{array}\)
Chọn A.
Tính giới hạn sau \(\mathop {\lim }\limits_{x \to + \infty } \frac{{x + \sqrt {{x^2} + 1} }}{{x + 2}}.\)
\(\begin{array}{l}\mathop {\lim }\limits_{x \to + \infty } \frac{{x + \sqrt {{x^2} + 1} }}{{x + 2}}\\ = \mathop {\lim }\limits_{x \to + \infty } \frac{{1 + \sqrt {1 + \frac{1}{{{x^2}}}} }}{{1 + \frac{2}{x}}}\\ = \frac{{1 + 1}}{1} = 2\end{array}\).
Chọn B.
Tính giới hạn sau \(\mathop {\lim }\limits_{x \to + \infty } \frac{{x + 1}}{{x + 2}}.\)
\(\mathop {\lim }\limits_{x \to + \infty } \frac{{x + 1}}{{x + 2}} = \mathop {\lim }\limits_{x \to + \infty } \frac{{1 + \frac{1}{x}}}{{1 + \frac{2}{x}}} = \frac{1}{1} = 1\).
Chọn A.
Biết \(\mathop {\lim }\limits_{x \to - \infty } \frac{{x - m\sqrt {{x^2} + 2} }}{{x + 2}} = 2.\)Hãy tìm m.
\(\begin{array}{l}\mathop {\lim }\limits_{x \to - \infty } \frac{{x - m\sqrt {{x^2} + 2} }}{{x + 2}} = 2\\ \Leftrightarrow \mathop {\lim }\limits_{x \to - \infty } \frac{{1 + m\sqrt {1 + \frac{2}{{{x^2}}}} }}{{1 + \frac{2}{x}}} = 2\\ \Leftrightarrow 1 + m = 2 \Leftrightarrow m = 1\end{array}\)
Chọn A.
Tìm m để hàm số \(y = \left\{ \begin{array}{l}\frac{{{x^2} - 4}}{{x - 2}}\quad \quad x \ne 2\\m\quad \quad \quad \quad x = 2\end{array} \right.\) liên tục tại \(x = 2?\)
Ta có:
\(\left\{ \begin{array}{l}\mathop {\lim }\limits_{x \to 2} y = \mathop {\lim }\limits_{x \to 2} \frac{{{x^2} - 4}}{{x - 2}} = \mathop {\lim }\limits_{x \to 2} \left( {x + 2} \right) = 4\\y\left( 2 \right) = m\end{array} \right.\)
Hàm số liên tục tại \(x = 2\)\( \Leftrightarrow \mathop {\lim }\limits_{x \to 2} y = y\left( 2 \right) \Leftrightarrow m = 4\).
Chọn C.
Tính giới hạn sau \(\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {2x + 2} - 2x}}{{x - 1}}\).
\(\begin{array}{l}\,\,\,\,\mathop {\lim }\limits_{x \to 1} \frac{{\sqrt {2x + 2} - 2x}}{{x - 1}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{{\left( {\sqrt {2x + 2} - 2x} \right)\left( {\sqrt {2x + 2} + 2x} \right)}}{{\left( {x - 1} \right)\left( {\sqrt {2x + 2} + 2x} \right)}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{{2x + 2 - 4{x^2}}}{{\left( {x - 1} \right)\left( {\sqrt {2x + 2} + 2x} \right)}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{{ - 2\left( {x - 1} \right)\left( {2x + 1} \right)}}{{\left( {x - 1} \right)\left( {\sqrt {2x + 2} + 2x} \right)}}\\ = \mathop {\lim }\limits_{x \to 1} \frac{{ - 2\left( {2x + 1} \right)}}{{\sqrt {2x + 2} + 2x}}\\ = \frac{{ - 2.\left( {2.1 + 1} \right)}}{{\sqrt {2.1 + 2} + 2.1}} = - \frac{3}{2}\end{array}\)
Chọn D.
Biết \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = m;\,\,\,\mathop {\lim }\limits_{x \to + \infty } g\left( x \right) = n.\) Tính \(\mathop {\lim }\limits_{x \to + \infty } \left[ {f(x) + g(x)} \right]\)
\(\begin{array}{l}\mathop {\lim }\limits_{x \to + \infty } \left[ {f\left( x \right) + g\left( x \right)} \right]\\ = \mathop {\lim }\limits_{x \to + \infty } f\left( x \right) + \mathop {\lim }\limits_{x \to + \infty } g\left( x \right)\\ = m + n\end{array}\).
Chọn A.
Biết \(\mathop {\lim }\limits_{x \to 2} f(x) = 3.\) Hãy tính \(\mathop {\lim }\limits_{x \to 2} \left[ {f\left( x \right) + x} \right].\)
\(\begin{array}{l}\mathop {\lim }\limits_{x \to 2} \left[ {f\left( x \right) + x} \right]\\ = \mathop {\lim }\limits_{x \to 2} f\left( x \right) + \mathop {\lim }\limits_{x \to 2} x\\ = 3 + 2 = 5\end{array}\).
Chọn A.
Cho biết mặt phẳng nào sau đây đây vuông góc với mặt phẳng \(\left( {SAB} \right)\)?
.jpg)
Ta có \(\left\{ \begin{array}{l}AD \bot AB\\AD \bot SA\end{array} \right. \Rightarrow AD \bot \left( {SAB} \right)\).
Mà \(AD \subset \left( {SAD} \right)\)\( \Rightarrow \left( {SAB} \right) \bot \left( {SAD} \right)\).
Chọn C.
Thực hiện tính: \(\mathop {\lim }\limits_{} \frac{{n + 1}}{{{n^2} + 2}}.\)
\(\mathop {\lim }\limits_{} \frac{{n + 1}}{{{n^2} + 2}} = \lim \frac{{\frac{1}{n} + \frac{1}{{{n^2}}}}}{{1 + \frac{2}{{{n^2}}}}} = 0\).
Chọn D.
Tính: \(\mathop {\lim }\limits_{} \frac{{n + \sqrt {{n^2} + 1} }}{{n + 3}}.\)
\(\begin{array}{l}\lim \frac{{n + \sqrt {{n^2} + 1} }}{{n + 3}}\\ = \lim \frac{{1 + \sqrt {1 + \frac{1}{{{n^2}}}} }}{{1 + \frac{3}{n}}}\\ = \frac{{1 + 1}}{1} = 2\end{array}\)
Chọn B.
Cho biết có dãy số \({u_n}\) thỏa \(\mathop {\lim }\limits_{} {u_n} = 2.\) Tính \(\mathop {\lim }\limits_{} \left( {{u_n} + \frac{{{2^n}}}{{{2^n} + 3}}} \right).\)
\(\begin{array}{l}\lim \left( {{u_n} + \frac{{{2^n}}}{{{2^n} + 3}}} \right)\\ = \lim {u_n} + \lim \frac{{{2^n}}}{{{2^n} + 3}}\\ = \lim {u_n} + \lim \frac{1}{{1 + \frac{3}{{{2^n}}}}}\\ = 2 + 1 = 3\end{array}\).
Chọn C.
Cho dãy số \({u_n},{v_n}\) thỏa \(\mathop {\lim }\limits_{} {u_n} = 2;\,\,\mathop {\lim }\limits_{} {v_n} = 1.\)Thực hiện tính \(\mathop {\lim }\limits_{} \left( {2{u_n} - 3{v_n}} \right).\)
\(\begin{array}{l}\lim \left( {2{u_n} - 3{v_n}} \right)\\ = 2\lim {u_n} - 3\lim {v_n}\\ = 2.2 - 3.1 = 1\end{array}\).
Chọn A.
Tứ diện \(OABC\) có \(OA,\,\,OB,\,\,OC\) đôi một vuông góc với nhau và \(OA = OB = OC = 1\). Gọi \(M\) là trung điểm của \(BC\) (tham khảo hình vẽ bên). Góc giữa hai đường thẳng \(OM\) và \(AB\) bằng:
.jpg)
Gọi \(N\) là trung điểm của \(AC \Rightarrow MN\) là đường trung bình của tam giác
\( \Rightarrow MN//AB\)\( \Rightarrow \angle \left( {OM;AB} \right) = \angle \left( {OM;MN} \right)\).
Trong tam giác vuông \(OBC\) có \(OM = \frac{1}{2}BC = \frac{{\sqrt 2 }}{2}\).
Trong tam giác vuông \(OAC\) có \(ON = \frac{1}{2}AC = \frac{{\sqrt 2 }}{2}\).
Trong tam giác vuông \(OAB\) có \(MN = \frac{1}{2}AB = \frac{{\sqrt 2 }}{2}\).
\( \Rightarrow OM = ON = MN = \frac{{\sqrt 2 }}{2}\)
\( \Rightarrow \Delta OMN\) đều \( \Rightarrow \angle OMN = {60^0}\).
Vậy \(\angle \left( {OM;AB} \right) = {60^0}\).
Chọn C.
Cho biết hình chóp tứ giác đều \(S.ABCD\) có tất cả các cạnh bằng \(a\). Gọi \(M\) là trung điểm của \(SD\) (tham khảo hình vẽ bên). Tang của góc giữa đường thẳng \(BM\) và mặt phẳng \(\left( {ABCD} \right)\) bằng:
Gọi \(O = AC \cap BD\). Do chóp \(S.ABCD\) đều \( \Rightarrow SO \bot \left( {ABCD} \right)\).
Trong \(\left( {SBD} \right)\) kẻ \(MH//SO\,\,\left( {H \in BD} \right)\)\( \Rightarrow MH \bot \left( {ABCD} \right)\).
\( \Rightarrow \angle \left( {BM;\left( {ABCD} \right)} \right)\)\( = \angle \left( {BM;BH} \right) = \angle MBH\).
\(ABCD\) là hình vuông cạnh \(a\)\( \Rightarrow AC = BD = a\sqrt 2 \).
\( \Rightarrow OB = OD = \frac{1}{2}BD = \frac{{a\sqrt 2 }}{2}\).
Dễ thấy \(MH\) là đường trung bình của \(\Delta SOD\)
\( \Rightarrow H\) là trung điểm của \(OD\) và \(MH = \frac{1}{2}SO\).
\( \Rightarrow BH = \frac{3}{4}BD = \frac{{3a\sqrt 2 }}{4}\) và \(MH = \frac{1}{2}SO = \frac{1}{2}\sqrt {S{D^2} - O{D^2}} \)\( = \frac{1}{2}\sqrt {{a^2} - \frac{{{a^2}}}{2}} = \frac{{a\sqrt 2 }}{4}\).
Trong tam giác vuông \(BMH\) có: \(\tan \angle MBH = \frac{{MH}}{{BH}}\)\( = \frac{{\frac{{a\sqrt 2 }}{4}}}{{\frac{{3a\sqrt 2 }}{4}}} = \frac{1}{3}\).
Vậy \(\tan \angle \left( {BM;\left( {ABCD} \right)} \right) = \frac{1}{3}\).
Chọn B.
Cho biết có tứ diện đều ABCD. Hãy tìm góc giữa hai đường thẳng AB và CD.
Gọi \(M\) là trung điểm của \(AB\).
\(\Delta ABC,\,\,\Delta ABD\) là các tam giác đều
\( \Rightarrow CM \bot AB;\,\,DM \bot AB\)\( \Rightarrow AB \bot \left( {CDM} \right)\).
Mà \(CD \subset \left( {CDM} \right) \Rightarrow AB \bot CD\).
Vậy \(\angle \left( {AB;CD} \right) = {90^0}\).
Chọn D.
Tính đạo hàm của hàm số cho sau: \(y = {x^2} + 1\).
\(y = {x^2} + 1 \Rightarrow y' = 2x\).
Chọn C.
Tính đạo hàm của hàm số \(y = \sin 2x\).
\(y = \sin 2x \Rightarrow y' = 2\cos 2x\).
Chọn D.
Tính đạo hàm của hàm số sau \(y = {\left( {{x^2} + x} \right)^2}\).
Ta có: \(y' = 2\left( {{x^2} + x} \right)\left( {2x + 1} \right)\).
Chọn D.
Cho hàm số \(y = f\left( x \right) = {x^2} + mx\) (m là tham số). Tìm giá trị m, biết \(f'\left( 1 \right) = 3\).
Ta có: \(f'\left( x \right) = 2x + m\)
\( \Rightarrow f'\left( 1 \right) = 2 + m = 3 \Leftrightarrow m = 1\)
Chọn A.
Cho hàm số là \(y = \sin x\). Hãy tính \(y''\left( 0 \right).\)
Ta có:
\(\begin{array}{l}y' = \left( {\sin x} \right)' = \cos x\\y'' = \left( {\cos x} \right)' = - \sin x\end{array}\).
\( \Rightarrow y''\left( 0 \right) = - \sin 0 = 0\).
Chọn A.
Cho hàm số sau \(y = f\left( x \right)\) có đạo hàm trên tập số thực. Hãy tìm hệ thức đúng?
Hệ thức đúng là: \(f'\left( 1 \right) = \mathop {\lim }\limits_{x \to 1} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}}.\)
Chọn A.
Giải bất phương trình \(f'\left( x \right) > 0\), biết \(f\left( x \right) = 2x + \sqrt {1 - {x^2}} .\)
\(\begin{array}{l}DKXD:\,\, - 1 \le x \le 1\\f'\left( x \right) = 2 + \frac{{ - 2x}}{{2\sqrt {1 - {x^2}} }}\\ = 2 - \frac{x}{{\sqrt {1 - {x^2}} }}\\f'\left( x \right) > 0\\ \Leftrightarrow 2 - \frac{x}{{\sqrt {1 - {x^2}} }} > 0\\ \Leftrightarrow \frac{{2\sqrt {1 - {x^2}} - x}}{{\sqrt {1 - {x^2}} }} > 0\,\,\left( {x \in \left( { - 1;1} \right)} \right)\\ \Leftrightarrow 2\sqrt {1 - {x^2}} - x > 0\\ \Leftrightarrow 2\sqrt {1 - {x^2}} > x\\ \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}1 - {x^2} > 0\\x < 0\end{array} \right.\\\left\{ \begin{array}{l}x \ge 0\\4\left( {1 - {x^2}} \right) > {x^2}\end{array} \right.\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l} - 1 < x < 1\\x < 0\end{array} \right.\\\left\{ \begin{array}{l}x \ge 0\\5{x^2} < 4\end{array} \right.\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l} - 1 < x < 0\\\left\{ \begin{array}{l}x \ge 0\\\frac{{ - 2}}{{\sqrt 5 }} < x < \frac{2}{{\sqrt 5 }}\end{array} \right.\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l} - 1 < x < 0\\0 \le x < \frac{2}{{\sqrt 5 }}\end{array} \right.\\ \Leftrightarrow - 1 < x < \frac{2}{{\sqrt 5 }}\,\,\left( {tm} \right)\end{array}\)
Vậy nghiệm của BPT là: \(x \in \left( { - 1;\frac{2}{{\sqrt 5 }}} \right).\)
Chọn C.
Cho biết khoảng cách từ \(S\) đến mặt phẳng \(\left( {ABCD} \right)\) bằng:
\(SA \bot \left( {ABCD} \right)\)\( \Rightarrow d\left( {S;\left( {ABCD} \right)} \right) = SA\).
Chọn B.
Tìm hệ số của x trong khai triển \({\left( {{x^2} + x + 2} \right)^2}\left( {x + 1} \right)\) thành đa thức:
\(\begin{array}{l}{\left( {{x^2} + x + 2} \right)^2}\left( {x + 1} \right)\\ = \left( {x + 1} \right)\sum\limits_{k = 0}^2 {C_2^k{{\left( {{x^2} + x} \right)}^k}{{.2}^{2 - k}}} \\ = \left( {x + 1} \right)\sum\limits_{k = 0}^2 {C_2^k{2^{2 - k}}\sum\limits_{l = 0}^k {C_k^l{{\left( {{x^2}} \right)}^l}{x^{k - l}}} } \\ = \left( {x + 1} \right)\sum\limits_{k = 0}^2 {C_2^k{2^{2 - k}}\sum\limits_{l = 0}^k {C_k^l{x^{k + l}}} } \end{array}\)
Số hạng chứa \(x\) trong khai triển trên là: \(C_2^0{2^2}.C_0^0x + C_2^1{.2^1}.C_1^0\).
Vậy hệ số của số hạng chứa \(x\) trong khai triển trên là: \(C_2^0{2^2}.C_0^0 + C_2^1{.2^1}.C_1^0 = 8\).
Chọn C.
Thực hiện tìm hệ số của \({x^2}\) trong khai triển \({\left( {{x^2} + x + 2} \right)^3}\) thành đa thức:
\(\begin{array}{l}{\left( {{x^2} + x + 2} \right)^3}\\ = \sum\limits_{k = 0}^3 {C_3^k{{\left( {{x^2}} \right)}^{3 - k}}{{\left( {x + 2} \right)}^k}} \\ = \sum\limits_{k = 0}^3 {C_3^k{x^{6 - 2k}}\sum\limits_{l = 0}^k {C_k^l{x^l}{2^{k - l}}} } \end{array}\).
(với \(0 \le k \le 3;\,\,0 \le l \le 3;\,\,k,l \in \mathbb{Z}\))
Hệ số của \({x^2}\) trong khai triển trên ứng với: \(6 - 2k + l = 2\)\( \Leftrightarrow 2k - l = 4\) \( \Leftrightarrow \left[ \begin{array}{l}k = 2;l = 0\\k = 3;l = 2\end{array} \right.\).
Vậy hệ số của \({x^2}\) trong khai triển trên là: \(C_3^2C_2^0{2^2} + C_3^3C_3^2{.2^1} = 18\).
Chọn B.
Cho hàm số \(y = \left( {1 + x} \right)\sqrt {1 - x} \) có đạo hàm \(y' = \frac{{ax + b}}{{2\sqrt {1 - x} }}\). Tính \(a + b.\)
\(\begin{array}{l}y' = \sqrt {1 - x} + \left( {1 + x} \right)\frac{{ - 1}}{{2\sqrt {1 - x} }}\\ = \frac{{2\left( {1 - x} \right) - 1 - x}}{{2\sqrt {1 - x} }} = \frac{{1 - 3x}}{{2\sqrt {1 - x} }}\\ \Rightarrow \left\{ \begin{array}{l}a = - 3\\b = 1\end{array} \right.\\ \Rightarrow a + b = - 3 + 1 = - 2\end{array}\)
Chọn A.
Lập phương trình tiếp tuyến của đồ thị hàm số sau đây \(y = {x^2} + 3x + 1\) tại điểm có hoành độ bằng 1.
Ta có: \(y' = 2x + 3 \Rightarrow y'\left( 1 \right) = 5\) và \(y\left( 1 \right) = 5\).
Vậy phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng 1 là: \(y = 5\left( {x - 1} \right) + 5 = 5x\).
Chọn A.
Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình thoi tâm \(O\). Biết rằng \(SA = SC,\,SB = SD\). Hãy tìm khẳng định sai ?
ABCD là hình thoi nên \(AC \bot BD\) tại trung điểm O của mỗi đường.
SA=SC nên tam giác SAC cân tại S\( \Rightarrow SO \bot AC\)
SB=SD nên tam giác SBD cân tại S\( \Rightarrow SO \bot BD\)
Ta có: \(\left\{ \begin{array}{l}SO \bot AC\\SO \bot BD\end{array} \right.\) \( \Rightarrow SO \bot \left( {ABCD} \right)\) nên C đúng.
Lại có: \(\left\{ \begin{array}{l}BD \bot SO\\BD \bot AC\end{array} \right. \Rightarrow BD \bot \left( {SAC} \right)\) nên A đúng.
\(\left\{ \begin{array}{l}AC \bot SO\\AC \bot BD\end{array} \right. \Rightarrow AC \bot \left( {SBD} \right)\) nên D đúng.
Đáp án B sai vì CD không thể vuông góc với AC.
Chọn B
Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(B\), \(SA \bot \left( {ABC} \right)\), \(SA = a,\) \({\rm{ }}AC = 2a,\) \({\rm{ }}BC = a\sqrt 3 \). Góc giữa \(SC\) và \(\left( {ABC} \right)\) là
Ta có: \(SA \bot \left( {ABC} \right)\) \( \Rightarrow AC\) là hình chiếu của \(SC\) lên \(\left( {ABC} \right)\)
\( \Rightarrow \) góc giữa SC và (ABC) bằng góc giữa SC và AC, chính là góc \(\widehat {SCA}\).
Chọn D
Cho hàm số \(y = \frac{{\sqrt {{x^2} + 2x + 3} }}{x}\) có đạo hàm \(y' = \frac{{ax + b}}{{{x^2}\sqrt {{x^2} + 2x + 3} }}\). Thực hiện tìm \(\max \left\{ {a,b} \right\}.\)
Ta có:
\(\begin{array}{l}y' = \frac{{\frac{{2x + 2}}{{2\sqrt {{x^2} + 2x + 3} }}.x - \sqrt {{x^2} + 2x + 3} }}{{{x^2}}}\\y' = \frac{{{x^2} + x - {x^2} - 2x - 3}}{{{x^2}\sqrt {{x^2} + 2x + 3} }}\\ = \frac{{ - x - 3}}{{{x^2}\sqrt {{x^2} + 2x + 3} }}\\ \Rightarrow \left\{ \begin{array}{l}a = - 1\\b = - 3\end{array} \right.\\ \Rightarrow \max \left\{ {a;b} \right\} = \max \left\{ { - 1; - 3} \right\}\\ = - 1\end{array}\)
Chọn B.
Cho biết hàm số \(y = f\left( x \right)\) có đạo hàm trên tập số thực, biết rằng \(f\left( {3 - x} \right) = {x^2} + x\). Tính \(f'\left( 2 \right)\).
\(f\left( {3 - x} \right) = {x^2} + x\)\( \Rightarrow - f'\left( {3 - x} \right) = 2x + 1\) .
Thay \(x = 1\) ta có \( - f'\left( 2 \right) = 2.1 + 1 = 3\)\( \Rightarrow f'\left( 2 \right) = - 3\).
Chọn B.
Thực hiện tìm vi phân của hàm số sau \(y = {x^3}\).
\(dy = d\left( {{x^3}} \right) = \left( {{x^3}} \right)'dx = 3{x^2}dx\).
Chọn C.
Giải phương trình sau đây \(f''\left( x \right) = 0\), biết \(f\left( x \right) = {x^3} - 3{x^2}\).
\(\begin{array}{l}f'\left( x \right) = 3{x^2} - 6x \Rightarrow f''\left( x \right) = 6x - 6\\ \Rightarrow f''\left( x \right) = 0 \Leftrightarrow 6x - 6 = 0 \Leftrightarrow x = 1\end{array}\)
Chọn D.
Cho chuyển động thẳng xác định bởi phương trình là \(s = {t^3} - 3{t^2} - 9t + 2\) (t được tính bằng giây, s được tính bằng mét). Hãy tìm gia tốc khi \(t = 2s\).
Ta có: \(s'\left( t \right) = 3{t^2} - 6t - 9\)\( \Rightarrow s''\left( t \right) = 6t - 6\)
\(\begin{array}{l} \Rightarrow a\left( t \right) = s''\left( t \right) = 6t - 6\\ \Rightarrow a\left( 2 \right) = 6.2 - 6 = 6\,\,\left( {m/{s^2}} \right)\end{array}\)
Chọn B.
Tìm hệ số góc \(k\) của tiếp tuyến của đồ thị sau \(y = {x^3} - 2{x^2} - 3x + 1\) tại điểm có hoành độ bằng 0.
Ta có: \(y' = 3{x^2} - 4x - 3\).
Hệ số góc của tiếp tuyến của đồ thị hàm số tại điểm có hoành độ \(x = 0\) là \(k = y'\left( 0 \right) = - 3\).
Chọn A.
Cho hình lập phương \(ABCD.EFGH\). Xác định góc giữa cặp vectơ \(\overrightarrow {AB} \) và \(\overrightarrow {DH} \).
Ta có: \(\left\{ \begin{array}{l}DH \bot AD\\DH \bot DC\end{array} \right.\) \( \Rightarrow DH \bot \left( {ABCD} \right) \Rightarrow DH \bot AB\)
Do đó góc giữa \(\overrightarrow {AB} \) và \(\overrightarrow {DH} \) bằng \({90^0}\).
Chọn C
Cho hình chóp S.ABC, gọi G là trọng tâm tam giác ABC. Em hãy tìm mệnh đề đúng trong các mệnh đề sau:
G là trọng tâm tam giác ABC nên:
\(\begin{array}{l}\overrightarrow {GA} + \overrightarrow {GB} + \overrightarrow {GC} = \overrightarrow 0 \\ \Rightarrow \overrightarrow {SA} - \overrightarrow {SG} + \overrightarrow {SB} - \overrightarrow {SG} + \overrightarrow {SC} - \overrightarrow {SG} = \overrightarrow 0 \\ \Leftrightarrow \overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} - 3\overrightarrow {SG} = \overrightarrow 0 \\ \Leftrightarrow \overrightarrow {SA} + \overrightarrow {SB} + \overrightarrow {SC} = 3\overrightarrow {SG} \end{array}\)
Chọn D
