Trong mặt phẳng tọa độ Oxy,tập hợp các điểm biểu diễn các số phức z thỏa mãn điều kiện \(\left| {z + 2 - i} \right| = 2\) là:
A. Đường tròn \({(x + 2)^2} + {(y - 1)^2} = 4\)
B. Đường tròn tâm \(I(2; - 1)\) và bán kính \(R = 2\)
C. Đường thẳng \(x - y - 2 = 0\)
D. Đường thẳng \(x + y - 2 = 0\)
Lời giải của giáo viên
ToanVN.com
Đặt \(z = x + yi\left( {x,y \in \mathbb{R}} \right)\) ta có:
\(\begin{array}{l}\left| {z + 2 - i} \right| = 2 \Leftrightarrow \left| {x + yi + 2 - i} \right| = 2 \Leftrightarrow \left| {\left( {x + 2} \right) + \left( {y - 1} \right)i} \right| = 2\\ \Leftrightarrow \sqrt {{{\left( {x + 2} \right)}^2} + {{\left( {y - 1} \right)}^2}} = 2 \Leftrightarrow {\left( {x + 2} \right)^2} + {\left( {y - 1} \right)^2} = 4\end{array}\)
Vậy tập hợp điểm \(M\) biểu diễn số phức \(z\) là đường tròn \({\left( {x + 2} \right)^2} + {\left( {y - 1} \right)^2} = 4\)
Chọn A
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f(x)\) liên tục trên \(\left[ {a;b} \right]\). Hãy chọn mệnh đề sai dưới đây:
Gọi \({z_1},{z_2}\) là hai nghiệm phức của phương trình \({z^2} - 4z + 5 = 0\). Khi đó giá trị của \(P = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}\)
Trong mặt phẳng tọa độ Oxy, tập hợp các điểm biểu diễn số phức z thỏa mãn điều kiện \({z^2} + {(\overline z )^2} = 0\) là:
Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt cầu \(\left( S \right)\) có tâm \(I(1;2; - 3)\) biết rằng mặt cầu \(\left( S \right)\) đi qua \(A(1;0;4)\).
Tìm số các số phức thỏa mãn điều kiện \({z^2} + 2\overline z = 0\)
Trong không gian với hệ tọa độ Oxyz, cho điểm \(A(3;2;1)\). Tính khoảng cách từ A đến trục Oy.
Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A(2; - 1;2);B(3;1; - 1);C(2;0;2).\) Viết phương trình mặt phẳng \(\left( \alpha \right)\)đi qua ba điểm A, B, C.
Cho số phức \(z = 2 - 3i\). Số phức liên hợp \(\overline z \) của số phức z là:
Nếu \(\int\limits_1^5 {\dfrac{{dx}}{{2x - 1}} = \ln c} \) với \(c \in \mathbb{Q}\) thì giá trị của \(c\) bằng:
Cho hàm số \(f(x)\) có đạo hàm liên tục trên \(\left[ {0;1} \right]\), biết rằng \(\int\limits_0^1 {f'\left( x \right)dx = 17} \) và \(f(0) = 5\). Tìm \(f(1)\).
Cho số phức \(z = 2 - i\). Mệnh đề nào dưới đây đúng?
Cho hình trụ \(\left( T \right)\)có chiều cao \(h\), độ dài đường sinh \(l\), bán kính đáy \(r\). Ký hiệu \({S_{xq}}\) là diện tích xung quanh của \(\left( T \right)\). Công thức nào sau đây là đúng?