Trong mặt phẳng tọa độ Oxy, tập hợp các điểm biểu diễn số phức z thỏa mãn điều kiện \({z^2} + {(\overline z )^2} = 0\) là:
A. Trục hoành và trục tung.
B. Đường phân giác của góc phần tư thứ nhất và thứ ba.
C. Trục hoành.
D. Các đường phân giác của góc tạo bởi hai trục tọa độ.
Lời giải của giáo viên
ToanVN.com
Đặt \(z = a + bi\,\,\left( {a,b \in \mathbb{R}} \right)\) ta có :
\(\begin{array}{l}{z^2} + {\left( {\overline z } \right)^2} = 0 \Leftrightarrow {\left( {a + bi} \right)^2} + {\left( {a - bi} \right)^2} = 0\\ \Leftrightarrow {a^2} + 2abi - {b^2} + {a^2} - 2abi - {b^2} = 0\\ \Leftrightarrow 2{a^2} - 2{b^2} = 0 \Leftrightarrow {a^2} - {b^2} = 0 \Leftrightarrow \left[ \begin{array}{l}a = b\\a = - b\end{array} \right.\end{array}\)
Vậy tập hợp các điểm biểu diễn số phức thỏa mãn bài toán là các đường thẳng \(y = x\) và \(y = - x\) chính là các đường phân giác của các góc phần tư.
Chọn D
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số \(f(x)\) liên tục trên \(\left[ {a;b} \right]\). Hãy chọn mệnh đề sai dưới đây:
Gọi \({z_1},{z_2}\) là hai nghiệm phức của phương trình \({z^2} - 4z + 5 = 0\). Khi đó giá trị của \(P = {\left| {{z_1}} \right|^2} + {\left| {{z_2}} \right|^2}\)
Tìm số các số phức thỏa mãn điều kiện \({z^2} + 2\overline z = 0\)
Trong không gian với hệ tọa độ Oxyz, cho điểm \(A(3;2;1)\). Tính khoảng cách từ A đến trục Oy.
Cho số phức \(z = 2 - 3i\). Số phức liên hợp \(\overline z \) của số phức z là:
Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A(2; - 1;2);B(3;1; - 1);C(2;0;2).\) Viết phương trình mặt phẳng \(\left( \alpha \right)\)đi qua ba điểm A, B, C.
Trong không gian với hệ tọa độ Oxyz, viết phương trình mặt cầu \(\left( S \right)\) có tâm \(I(1;2; - 3)\) biết rằng mặt cầu \(\left( S \right)\) đi qua \(A(1;0;4)\).
Nếu \(\int\limits_1^5 {\dfrac{{dx}}{{2x - 1}} = \ln c} \) với \(c \in \mathbb{Q}\) thì giá trị của \(c\) bằng:
Cho hàm số \(f(x)\) có đạo hàm liên tục trên \(\left[ {0;1} \right]\), biết rằng \(\int\limits_0^1 {f'\left( x \right)dx = 17} \) và \(f(0) = 5\). Tìm \(f(1)\).
Cho số phức \(z = 2 - i\). Mệnh đề nào dưới đây đúng?
Thu gọn số phức \(z = i + (2 - 4i) - (3 - 2i)\), ta được:
Trong không gian với hệ tọa độ Oxyz, cho mặt cầu \(\left( S \right)\)có phương trình \({x^2} + {y^2} + {z^2} - 2x - 6y + 4z - 2 = 0\). Tìm tọa độ tâm I và tính bán kính R của \(\left( S \right)\):