Trong không gian với hệ trục tọa độ Oxyz, mặt phẳng (P) cắt ba trục Ox, Oy, Oz lần lượt tại A, B, C; trực tâm tam giác \(ABC\) là \(H\left( {1;2;3} \right)\). Phương trình của mặt phẳng (P) là:
A. \(x + 2y + 3z - 14 = 0\).
B. \(x + 2y + 3z + 14 = 0\).
C. \(\dfrac{x}{1} + \dfrac{y}{2} + \dfrac{z}{3} = 1\).
D. \(\dfrac{x}{1} + \dfrac{y}{2} + \dfrac{z}{3} = 0\).
Lời giải của giáo viên
ToanVN.com
Giả sử \(A\left( {a;0;0} \right),B\left( {0;b;0} \right),C\left( {0;0;c} \right),\,\,\left( {a,b,c \ne 0} \right) \Rightarrow \left\{ \begin{array}{l}\left( P \right):\dfrac{x}{a} + \dfrac{y}{b} + \dfrac{z}{c} = 1\\\overrightarrow {HA} = \left( {a - 1; - 2; - 3} \right);\,\overrightarrow {HB} = \left( { - 1;b - 2; - 3} \right)\\\overrightarrow {CB} = \left( {0;b; - c} \right);\,\,\overrightarrow {AC} = \left( { - a;0;c} \right)\end{array} \right.\)
\(H\) là trực tâm tam giác \(ABC \Leftrightarrow \left\{ \begin{array}{l}H \in \left( P \right)\\\overrightarrow {HA} .\overrightarrow {BC} = 0\\\overrightarrow {HB} .\overrightarrow {AC} = 0\end{array} \right.\)
\(\begin{array}{l} \Leftrightarrow \left\{ \begin{array}{l}\dfrac{1}{a} + \dfrac{2}{b} + \dfrac{3}{c} = 1\\\left( {a - 1} \right).0 - 2.b - 3.\left( { - c} \right) = 0\\ - 1.\left( { - a} \right) + \left( {b - 2} \right).0 - 3.c = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\dfrac{1}{a} + \dfrac{2}{b} + \dfrac{3}{c} = 1\\b = \dfrac{3}{2}c\\a = 3c\end{array} \right.\\ \Leftrightarrow \left\{ \begin{array}{l}\dfrac{1}{{3c}} + \dfrac{2}{{\dfrac{3}{2}c}} + \dfrac{3}{c} = 1\\b = \dfrac{3}{2}c\\a = 3c\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\dfrac{{14}}{{3c}} = 1\\b = \dfrac{3}{2}c\\a = 3c\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 14\\b = 7\\c = \dfrac{{14}}{3}\end{array} \right.\\ \Rightarrow \left( P \right):\dfrac{x}{{14}} + \dfrac{y}{7} + \dfrac{z}{{\dfrac{{14}}{3}}} = 1 \Leftrightarrow x + 2y + 3z - 14 = 0.\end{array}\)
Chọn: A
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC , biết \(A\left( {1;1;1} \right),B\left( {5;1; - 2} \right),C\left( {7;9;1} \right)\). Tính độ dài đường phân giác trong AD của góc A.
Tìm phần ảo của số phức z thỏa mãn \(z + 2\overline z = {\left( {2 - i} \right)^3}\left( {1 - i} \right)\).
Tìm độ dài đường kính của mặt cầu \(\left( S \right)\) có phương trình \({x^2} + {y^2} + {z^2} - 2y + 4z + 2 = 0\).
Thể tích khối tròn xoay khi cho hình phẳng giới hạn bởi Parabol \(\left( P \right):y = {x^2}\) và đường thẳng \(d:y = x\) xoay quanh trục Ox bằng:
Tìm nguyên hàm của hàm số \(f\left( x \right) = \sin 3x\).
Trong không gian với hệ tọa độ \(\left( {O;\overrightarrow i ,\overrightarrow j ,\overrightarrow k } \right)\) cho vectơ \(\overrightarrow {OM} = \overrightarrow j - \overrightarrow k \). Tìm tọa độ điểm M.
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng \(\left( P \right):2x - 2y - z + 3 = 0\) và điểm \(M\left( {1; - 2;13} \right)\). Tính khoảng cách d từ M đến (P).
Tính diện tích hình phẳng giới hạn bởi \(\left( P \right):y = {x^2} - 4x + 3\) và trục Ox.
Cho số phức \(z = 7 - i\sqrt 5 \). Phần thực và phần ảo của số phức \(\overline z \) lần lượt là
Trong không gian với hệ trục tọa độ Oxyz, cho \(\overrightarrow u = \left( { - 2;3;0} \right),\overrightarrow v = \left( {2; - 2;1} \right)\). Độ dài của vectơ \(\overrightarrow {\bf{w}} = \overrightarrow u - 2\overrightarrow v \) là
Cho số phức \(z = - 4 - 6i\). Gọi M là điểm biểu diễn số phức \(\overline z \). Tung độ của điểm M là:
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng \(\left( P \right)\) đi qua gốc tọa độ và nhận \(\overrightarrow n = \left( {3;2;1} \right)\) là vectơ pháp tuyến. Phương trình của mặt phẳng \(\left( P \right)\) là:
Trong không gian với hệ trục tọa độ Oxyz, cho \(M\left( {2;3; - 1} \right),N\left( { - 2; - 1;3} \right)\). Tìm tọa độ điểm E thuộc trục hoành sao cho tam giác MNE vuông tại M.