Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng \(\left( \alpha \right)\) cắt các trục tọa độ tại A, B. Biết trọng tâm của tam giác ABC là \(G\left( { - 1; - 3;2} \right)\). Mặt phẳng \(\left( \alpha \right)\) song song với mặt phẳng nào sau đây?
A. \(6x - 2y + 3z - 1 = 0\).
B. \(6x + 2y - 3z + 18 = 0\).
C. \(6x + 2y + 3z - 18 = 0\).
D. \(6x + 2y - 3z - 1 = 0\).
Lời giải của giáo viên
ToanVN.com
Giả sử \(\left( \alpha \right)\) cắt các trục tọa độ tại các điểm \(A\left( {a;0;0} \right),B\left( {0;b;0} \right),C\left( {0;0;c} \right),\,\,\,\,\left( {a,b,c \ne 0} \right)\)
Do \(G\left( { - 1; - 3;2} \right)\) là trọng tâm tam giác ABC nên \(\left\{ \begin{array}{l}a = 3.\left( { - 1} \right)\\b = 3.\left( { - 3} \right)\\c = 3.2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = - 3\\b = - 9\\c = 6\end{array} \right.\)
Phương trình mặt phẳng \(\left( \alpha \right)\) là: \(\dfrac{x}{{ - 3}} + \dfrac{y}{{ - 9}} + \dfrac{z}{6} = 1 \Leftrightarrow 6x + 2y - 3z + 18 = 0\)
Mặt phẳng này song song với mặt phẳng có phương trình: \(6x + 2y - 3z - 1 = 0\).
Chọn: D
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ trục tọa độ Oxyz, cho tam giác ABC , biết \(A\left( {1;1;1} \right),B\left( {5;1; - 2} \right),C\left( {7;9;1} \right)\). Tính độ dài đường phân giác trong AD của góc A.
Tìm độ dài đường kính của mặt cầu \(\left( S \right)\) có phương trình \({x^2} + {y^2} + {z^2} - 2y + 4z + 2 = 0\).
Tìm phần ảo của số phức z thỏa mãn \(z + 2\overline z = {\left( {2 - i} \right)^3}\left( {1 - i} \right)\).
Thể tích khối tròn xoay khi cho hình phẳng giới hạn bởi Parabol \(\left( P \right):y = {x^2}\) và đường thẳng \(d:y = x\) xoay quanh trục Ox bằng:
Tìm nguyên hàm của hàm số \(f\left( x \right) = \sin 3x\).
Trong không gian với hệ tọa độ \(\left( {O;\overrightarrow i ,\overrightarrow j ,\overrightarrow k } \right)\) cho vectơ \(\overrightarrow {OM} = \overrightarrow j - \overrightarrow k \). Tìm tọa độ điểm M.
Tính diện tích hình phẳng giới hạn bởi \(\left( P \right):y = {x^2} - 4x + 3\) và trục Ox.
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng \(\left( P \right):2x - 2y - z + 3 = 0\) và điểm \(M\left( {1; - 2;13} \right)\). Tính khoảng cách d từ M đến (P).
Cho số phức \(z = - 4 - 6i\). Gọi M là điểm biểu diễn số phức \(\overline z \). Tung độ của điểm M là:
Cho số phức \(z = 7 - i\sqrt 5 \). Phần thực và phần ảo của số phức \(\overline z \) lần lượt là
Trong không gian với hệ trục tọa độ Oxyz, cho mặt phẳng \(\left( P \right)\) đi qua gốc tọa độ và nhận \(\overrightarrow n = \left( {3;2;1} \right)\) là vectơ pháp tuyến. Phương trình của mặt phẳng \(\left( P \right)\) là:
Trong không gian với hệ trục tọa độ Oxyz, cho \(\overrightarrow u = \left( { - 2;3;0} \right),\overrightarrow v = \left( {2; - 2;1} \right)\). Độ dài của vectơ \(\overrightarrow {\bf{w}} = \overrightarrow u - 2\overrightarrow v \) là
Cho \(\int\limits_2^4 {f\left( x \right)dx} = 10\) và \(\int\limits_2^4 {g\left( x \right)dx} = 5\). Tính \(I = \int\limits_2^4 {\left[ {3f\left( x \right) - 5g\left( x \right)} \right]dx} \).