Lời giải của giáo viên
ToanVN.com
Kiểm tra ta thấy đáp án đúng là C.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;-1;3) và hai đường thẳng: \({d_1}:\frac{{x - 4}}{1} = \frac{{y + 2}}{4} = \frac{{z - 1}}{{ - 2}},{d_2}:\frac{{x - 2}}{1} = \frac{{y + 1}}{{ - 1}} = \frac{{z - 1}}{1}\)
Viết phương trình đường thẳng d đi qua điểm A, vuông góc với đường thẳng d1 và cắt đường thẳng d2
Trong không gian với hệ trục Oxyz, mặt phẳng đi qua điểm A(1;3;-2) và song song với mặt phẳng \(\left( P \right):2x - y + 3z + 4 = 0\) là
Trong không gian với hệ trục Oxyz, cho đường thẳng \(d:x - 1 = \frac{{y - 2}}{2} = \frac{{z - 4}}{3}\) và mặt phẳng \(\left( P \right):x + 4y + 9z - 9 = 0\). Giao điểm I của d và (P) là
Trong không gian hệ tọa độ Oxyz, cho các điểm \(A\left( { - 1;2;4} \right),B\left( { - 1;1;4} \right),C\left( {0;0;4} \right)\). Tìm số đo của \(\widehat {ABC}\).
Trong không gian với hệ tọa độ Oxyz, cho đường thẳng \(d:\frac{x}{1} = \frac{{y + 1}}{2} = \frac{{z + 2}}{3}\) và mặt phẳng \(\left( P \right):x + 2y - 2z + 3 = 0\). Tìm tọa độ điểm M có các tọa độ âm thuộc d sao cho khoảng cách từ M đến (P) bằng 2.
Trong không gian với hệ trục tọa độ Oxyz, cho hai điểm \(M\left( { - 2; - 2;1} \right),A\left( {1;2; - 3} \right)\) và đường thẳng \(d:\frac{{x + 1}}{1} = \frac{{y - 5}}{2} = \frac{z}{{ - 1}}\). Tìm vectơ chỉ phương \(\vec u\) của đường thẳng \(\Delta\) đi qua M, vuông góc với đường thẳng d đồng thời cách điểm A một khoảng bé nhất.
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):2x + 2y - z + 3 = 0\) và đường thẳng \(\left( d \right):\frac{{x - 1}}{1} = \frac{{y + 3}}{2} = \frac{z}{2}\). Gọi A là giao điểm của (d) và (P); gọi M là điểm thuộc (d) thỏa mãn điều kiện MA = 2. Tính khoảng cách từ M đến mặt phẳng (P).
Trong không gian với hệ tọa độ Oxyz, cho ba điểm \(A\left( {1;3;5} \right),B\left( {2;0;1} \right),C\left( {0;9;0} \right)\). Tìm trọng tâm G của tam giác ABC.
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(-1;1;0) và B(3;1;-2). Viết phương trình mặt phẳng (P) đi qua trung điểm I của cạnh AB và vuông góc với đường thẳng AB.
Trong không gian Oxyz, cho đường thẳng \(\Delta :\frac{x}{1} = \frac{y}{1} = \frac{{z - 1}}{4}\) và điểm M(0;3;-2). Phương trình của mặt phẳng (Q) đi qua M , song song với \(\Delta\) và cách \(\Delta\) một khoảng bằng 3 là
Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD với \(A\left( { - 1;2;1} \right),B\left( {0;0; - 2} \right),C\left( {1;0;1} \right)\), D(2;1;-1). Tính thể tích tứ diện ABCD.
Trong không gian Oxyz, cho đường thẳng \(\Delta :\frac{x}{1} = \frac{y}{1} = \frac{{z - 1}}{4}\) và điểm M(0;3;-2). Phương trình của mặt phẳng (P) đi qua M và \(\Delta\) là
Trong không gian với hệ tọa độ Oxyz, cho \(A\left( {2;0;0} \right);B\left( {0;3;1} \right);C\left( { - 3;6;4} \right)\). Gọi M là điểm nằm trên đoạn BC sao cho MC = 2MB. Độ dài đoạn AM là:
Trong không gian Oxyz, cho 3 điểm \(M\left( {1;0;2} \right),N\left( { - 3; - 4;1} \right),P\left( {2;5;3} \right)\). Phương trình mặt phẳng (MNP) là
Trong không gian với hệ trục tọa độ Oxyz, cho tam giác BCD có \(B\left( { - 1;0;3} \right),C\left( {2; - 2;0} \right)\), D(-3;2;1). Tính diện tích tam giác BCD.