Nếu hàm số \(y = f\left( x \right)\) liên tục trên \(\mathbb{R}\) thỏa mãn \(f\left( x \right) < f\left( 0 \right)\forall x \in \left( { - 2;2} \right)\backslash \left\{ 0 \right\}\) thì
A. \(x = 0\) là một điểm cực tiểu của hàm số đã cho.
B. \(x = 0\) là một điểm cực đại của hàm số đã cho.
C. Hàm số đã cho có giá trị nhỏ nhất trên tập số \(\mathbb{R}\) bằng \(f\left( 0 \right).\)
D. Hàm số đã cho có giá trị lớn nhất trên tập số \(\mathbb{R}\) bằng \(f\left( 0 \right).\)
Lời giải của giáo viên
ToanVN.com
Ta có: \(f\left( x \right) < f\left( 0 \right)\,\,\forall x \in \left( { - 2;\,\,2} \right)\backslash \left\{ 0 \right\} \Rightarrow x = 0\) là điểm cực đại của hàm số \(y = f\left( x \right).\)
Chọn B.
CÂU HỎI CÙNG CHỦ ĐỀ
Một cái xúc xích dạng hình trụ có đường kính đáy 2cm và chiều cao 6cm, giả sử giá bán mỗi cm3 xúc xích là 500 đồng. Bạn An cần trả tiền để mua một gói 4 cái xúc xích. Số tiền gần đúng nhất cho 4 cái xúc xích là
Tiếp tuyến của đồ thị hàm số \(y = {x^3}\) tại điểm hoành độ 0 là đường thẳng
Cho khối chóp S.ABC có \(SA \bot \left( {ABC} \right),SA = h,AB = c,AC = b,\) \(BAC = \alpha .\)Thể tích khối chóp S.ABC bằng
Tập hợp các giá trị m để phương trình \({\log _{2020}}x = m\) có nghiệm thực là
Cho biểu thức \(P = \sqrt[5]{{{x^6}}}\left( {x > 0} \right).\) Khẳng định nào sau đây là đúng?
Nếu các số dương a, b thỏa mãn \({2020^a} = b\) thì
Trên khoảng \(\left( {0; + \infty } \right),\) đạo hàm của hàm số \(y = \sqrt[8]{{{x^{15}}}}\) bằng
Một khối bê tông có dạng hình lăng trụ đứng với độ dài các cạnh đáy là 3dm, 4dm, 5dm, độ dài cạnh bên là 6dm. Thể tích của khối bê tông bằng
.jpg)
Nếu một khối trụ có bán kính đường tròn đáy bằng \(R\) và chiều cao bằng \(h\) thì có thể tích bằng
Tập xác định của hàm số \(y = {\left( {x + 3} \right)^{\frac{1}{3}}}\) là
Cho mặt cầu tâm O đường kính 9cm. Mặt phẳng (P) tiếp xúc với mặt cầu đã cho khi và chỉ khi khoảng cách từ O đến (P) bằng
Phương trình đường tiệm cận ngang của đồ thị hàm số \(y = \dfrac{{6x - 5}}{{x + 6}}\) là
Nếu một khối chóp có diện tích đáy bằng S và chiều cao bằng h thì có thể tích được tính theo công thức
Cho ABCD là hình chữ nhật, AB = a, AD = b. Quay hình chữ nhật ABCD xung quanh cạnh AB ta được một khối tròn xoay có thể tích bằng