Cho khối chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông cạnh bằng \(2a\). Tam giác \(SAB\) nằm trên mặt phẳng vuông góc với đáy và có \(SA = a,{\mkern 1mu} {\mkern 1mu} \,\,SB = a\sqrt 3 .\) Tính thể tích khối chóp \(SACD\).
A. \(\dfrac{{{a^3}\sqrt 3 }}{3}.\)
B. \(\dfrac{{2{a^3}\sqrt 3 }}{3}.\)
C. \(\dfrac{{{a^3}\sqrt 2 }}{3}.\)
D. \(\dfrac{{{a^3}\sqrt 2 }}{6}.\)
Lời giải của giáo viên
ToanVN.com
.jpg)
Ta có: \(\left\{ {\begin{array}{*{20}{l}}{SA = a}\\{SB = a\sqrt 3 }\\{AB = 2a}\end{array}} \right. \Rightarrow \left\{ {\begin{array}{*{20}{l}}{S{A^2} = {a^2}}\\{S{B^2} = 3{a^2}}\\{A{B^2} = 4{a^2}}\end{array}} \right.\)
\( \Rightarrow S{A^2} + S{B^2} = A{B^2}{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( { = 4{a^2}} \right).\)
\( \Rightarrow \Delta SAB\) là tam giác vuông tại S.
Kẻ \(SH \bot AB = \left\{ H \right\}.\)
Khi đó áp dụng hệ thức lượng trong \(\Delta SAB\) vuông tại \(S\) ta có:
\(\begin{array}{*{20}{l}}{SH = \dfrac{{SA.SB}}{{AB}} = \dfrac{{a.a\sqrt 3 }}{{2a}} = \dfrac{{a\sqrt 3 }}{2}.}\\{ \Rightarrow {V_{SACD}} = \dfrac{1}{3}SH.{S_{ACD}} = \dfrac{1}{3}SH.\dfrac{1}{2}AD.DC}\\{ = \dfrac{1}{3}.\dfrac{{a\sqrt 3 }}{2}.\dfrac{1}{2}.4{a^2} = \dfrac{{{a^2}\sqrt 3 }}{3}.}\end{array}\)
Chọn A.
CÂU HỎI CÙNG CHỦ ĐỀ
Trong các hàm số sau đây, hàm số nào đồng biến trên R ?
Công thức tính thể tích của khối chóp có diện tích đáy B và chiều cao h
Công thức tính thể tích của khối lăng trụ có diện tích đáy B và chiều cao h
Biết \({m_0}\) là giá trị của tham số \(m\) để hàm số \(y = \dfrac{{ - mx + 2}}{{x + m}}\) có giá trị nhỏ nhất trên đoạn \(\left[ { - 1;0} \right]\) bằng \( - 3\). Khi đó:
Tìm số giao điểm của đồ thị hàm số \(y = {x^4} - 3{x^2} - 5\) và trục hoành.
Cho hàm số y = f(x) có đồ thị như hình vẽ dưới đây.
.png)
Mệnh đề nào dưới đây đúng ?
Tìm tất cả các giá trị của tham số \(m\) để đồ thị hàm số \(y = \dfrac{{m{x^3} - 2}}{{{x^3} - 3x + 2}}\) có đúng hai đường tiệm cận đứng
Điểm cực đại của hàm số \(y = - {x^3} + 3{x^2} + 2\)
Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, cạnh \(SA = SB = SC = \dfrac{{a\sqrt 6 }}{3}\). Tính thể tích V của khối chóp đã cho.
Tìm tất cả các giá trị của m để hàm số \(y = {\cos ^3}x - 3{\sin ^2}x - m\cos x - 1\) đồng biến trên đoạn \(\left[ {0;\dfrac{\pi }{2}} \right].\)
Cho hàm số \(y = {x^3} - 3x\). Mệnh đề nào dưới đây đúng ?
Hàm số \(y = - {x^3} + 3{x^2} - 4\) có đồ thị như hình vẽ sau
.png)
Tìm các giá trị của m đề phương trình \({x^3} - 3{x^2} + m = 0\) có hai nghiệm
Gọi M, N là giao điểm của đồ thị hàm số \(y = \dfrac{{x + 1}}{{x - 2}}\) và đường thẳng d: y = x + 2. Hoành độ trung điểm I của đoạn MN là