Cho hình chóp tam giác S.ABC có đáy ABC là tam giác đều cạnh a, cạnh \(SA = SB = SC = \dfrac{{a\sqrt 6 }}{3}\). Tính thể tích V của khối chóp đã cho.
A. \(\,\,V = \dfrac{{{a^3}}}{{12}}\)
B. \(\,\,\,V = \dfrac{{{a^3}\sqrt 2 }}{{12}}\)
C. \(\,\,V = \dfrac{{{a^3}}}{2}\)
D. \(\,\,V = \dfrac{{{a^3}\sqrt 3 }}{6}\)
Lời giải của giáo viên
ToanVN.com
.png)
Gọi G là trọng tâm tam giác ABC, I là trung điểm của AB
\(\begin{array}{l}\left. \begin{array}{l}GA = GB = GC\\SA = SB = SC\end{array} \right\} \Rightarrow SG \bot \left( {ABC} \right)\\CG = \dfrac{2}{3}CI = \dfrac{2}{3}.\dfrac{{a\sqrt 3 }}{2} = \dfrac{{a\sqrt 3 }}{3}\\SG = \sqrt {S{C^2} - C{G^2}} \\ = \sqrt {{{\left( {\dfrac{{a\sqrt 6 }}{3}} \right)}^2} - {{\left( {\dfrac{{a\sqrt 3 }}{3}} \right)}^2}} = \dfrac{{a\sqrt 3 }}{3}\\V = \dfrac{1}{3}SG.{S_{ABC}} \\\;\;\;\;= \dfrac{1}{3}.\dfrac{{a\sqrt 3 }}{3}.\dfrac{{{a^2}\sqrt 3 }}{4} = \dfrac{{{a^3}}}{{12}}\end{array}\)
Chọn A
CÂU HỎI CÙNG CHỦ ĐỀ
Trong các hàm số sau đây, hàm số nào đồng biến trên R ?
Biết \({m_0}\) là giá trị của tham số \(m\) để hàm số \(y = \dfrac{{ - mx + 2}}{{x + m}}\) có giá trị nhỏ nhất trên đoạn \(\left[ { - 1;0} \right]\) bằng \( - 3\). Khi đó:
Công thức tính thể tích của khối lăng trụ có diện tích đáy B và chiều cao h
Công thức tính thể tích của khối chóp có diện tích đáy B và chiều cao h
Tìm số giao điểm của đồ thị hàm số \(y = {x^4} - 3{x^2} - 5\) và trục hoành.
Tìm tất cả các giá trị của tham số \(m\) để đồ thị hàm số \(y = \dfrac{{m{x^3} - 2}}{{{x^3} - 3x + 2}}\) có đúng hai đường tiệm cận đứng
Cho hàm số y = f(x) có đồ thị như hình vẽ dưới đây.
.png)
Mệnh đề nào dưới đây đúng ?
Cho hàm số \(y = {x^3} - 3x\). Mệnh đề nào dưới đây đúng ?
Điểm cực đại của hàm số \(y = - {x^3} + 3{x^2} + 2\)
Tìm tất cả các giá trị của m để hàm số \(y = {\cos ^3}x - 3{\sin ^2}x - m\cos x - 1\) đồng biến trên đoạn \(\left[ {0;\dfrac{\pi }{2}} \right].\)
Gọi M, N là giao điểm của đồ thị hàm số \(y = \dfrac{{x + 1}}{{x - 2}}\) và đường thẳng d: y = x + 2. Hoành độ trung điểm I của đoạn MN là
Cho hàm số \(y = {x^4} - 2{x^2} + m - 2\) có đồ thị \(\left( C \right)\). Gọi \(S\) là tập các giá trị của \(m\) sao cho đồ thị \(\left( C \right)\) có đúng một tiếp tuyến song song với trục Ox. Tổng tất cả các phần tử của \(S\) là
Hàm số \(y = - {x^3} + 3{x^2} - 4\) có đồ thị như hình vẽ sau
.png)
Tìm các giá trị của m đề phương trình \({x^3} - 3{x^2} + m = 0\) có hai nghiệm