Lời giải của giáo viên
ToanVN.com
\(\begin{array}{l} {f^\prime }(x) = (x + 1){(x - 2)^2}{(x - 3)^3}{(x + 5)^4}\\ \Leftrightarrow \left[ \begin{array}{l} x + 1 = 0\\ {\left( {x - 2} \right)^2} = 0\\ {\left( {x - 3} \right)^3} = 0\\ {\left( {x + 5} \right)^4} = 0 \end{array} \right. \Leftrightarrow \left[ \begin{array}{l} x = - 1\\ x = x\\ x = 3\\ x = - 5 \end{array} \right. \end{array}\)
Trong đó x=-1 và x=3 là các nghiệm bội lẻ nên y' đổi dấu khi đi qua x=-1 và x=3. Vậy x=-1 và x=3 là hai cực trị.
Qua các nghiệm bội chẵn x=2 và x=-5 thì y' không đổi dấu nên x=2 và c=-5 không phải cực trị.
Vậy hàm số có hai điểm cực trị.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số y=f(x) có bảng biến thiên như hình vẽ bên. Khẳng định nào sau đây là đúng?

Cho hình chóp tam giác S.ABC với SA , SB , SC đôi một vuông góc và \(S A=S B=S C=a\) . Tính thế tích của khối chóp S.ABC.
Cho đồ thị như hình vẽ bên. Đây là đồ thị của hàm số nào?

Với giá trị nào của thì biểu thức \(\left(4-x^{2}\right)^{\frac{1}{3}}\) có nghĩa
Đồ thị hàm số sau có bao nhiêu đường tiệm cận \(y=\frac{\sqrt{x-2}}{x^{2}-4 x+3} ?\)
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O cạnh 2a . Biết SA vuông góc với mặt phẳng đáy và \(S A=a \sqrt{2}\). Tính thể tích khối chóp S.ABO.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a . Cạnh bên SA vuông góc với đáy và có độ dài bằng 2a . Thể tích khối tứ diện S.BCD là:
Hỏi hàm số \(y=2 x^{4}-5\) đồng biến trên khoảng nào?
So sánh hai số m và n nếu \(3,2^{m}<3,2^{n}\) thì:
Với giá trị m bằng bao nhiêu thì phương trình \(\log _{2+\sqrt{3}}(m x+3)+\log _{2-\sqrt{3}}\left(m^{2}+1\right)=0\) có nghiệm là -1 ?
Số điểm cực trị của hàm số \(y=-x^{3}+3 x^{2}+x+3\) là
Cho hàm số \(y=3^{\frac{x}{2}}\)có đồ thị (C). Hàm số nào sau đây có đồ thị đối xứng với qua đường thẳng y=x
Tìm tất cả các giá trị thực của tham số m để hàm số: \(y=\frac{1}{3} x^{3}+m x^{2}+(m+6) x+m\) có cực đại và cực tiểu .
Cho phương trình \(4.4^{x}-9.2^{x+1}+8=0\) . Gọi \(x_1; x_2\) là hai nghiệm của phương trình trên. Khi đó, tích \(x_1. x_2\) bằng: