Cho hàm số \(y = {x^4} - 4{x^2} + 3\). Mệnh đề nào dưới đây sai ?
A. Hàm số chỉ có một điểm cực trị.
B. Đồ thị của hàm số nhận trục tung làm trục đối xứng.
C. Hàm số đã cho là hàm số chẵn.
D. Các điểm cực trị của đồ thị hàm số tạo thành một tam giác cân.
Lời giải của giáo viên
ToanVN.com
Ta có: \(y' = 4{x^3} - 8x = 0\) \( \Leftrightarrow \left[ \begin{array}{l}x = 0\\x = \pm \sqrt 2 \end{array} \right.\)
Do đó hàm số có 3 điểm cực trị nên A sai.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số y = f(x) có đạo hàm trên (a ; b). Nếu f’(x) đổi dấu từ âm sang dương qua điểm x0 thì
Một khối chóp có đáy là đa giác \(n\)cạnh. Trong các mệnh đề sau đây, mệnh đề nào đúng?
Cho hàm số y = f(x) xác định trên khoảng \((0; + \infty )\) và thỏa mãn \(\mathop {\lim }\limits_{x \to + \infty } f(x) = 1\). Hãy chọn mệnh đề đúng trong các mệnh đề sau:
Cho hàm số y = f(x) có bảng biến thiên như sau.
Hàm số đã cho nghịch biến trên khoảng nào sau đây ?
.png)
Giá trị cực đại của hàm số \(y = {x^3} - 12x - 1\).
Cho khối hộp ABCD. A’B’C’D’. Gọi O là giao của AC và BD. Tính tỷ số thể tích của khối chóp O. A’B’C’D’ và khối chóp đã cho.
Phép vị tự tỉ số \(k > 0\) biến khối chóp có thể tích \(V\) thành khối chóp có thể tích \(V'\). Khi đó:
Hàm số \(y = - {x^3} + 3x - 5\) đồng biến trên khoảng nào ?
Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình vuông tại \(A\) và \(D\) thỏa mãn \(SA \bot \left( {ABCD} \right)\) và \(AB = 2AD = 2CD = 2a = \sqrt 2 SA\). Thể tích khối chóp \(S.BCD\) là:
.png)