Cho hàm số y = f(x) xác định trên khoảng \((0; + \infty )\) và thỏa mãn \(\mathop {\lim }\limits_{x \to + \infty } f(x) = 1\). Hãy chọn mệnh đề đúng trong các mệnh đề sau:
A. Đường thẳng x = 1 là tiệm cận ngang của đồ thị hàm số y = f(x).
B. Đường thẳng x = 1 là tiệm cận đứng của đồ thị hàm số y = f(x).
C. Đường thẳng y = 1 là tiệm cận ngang của đồ thị hàm số y = f(x).
D. Đường thẳng y = 1 là tiệm cận đứng của đồ thị hàm số y = f(x).
Lời giải của giáo viên
ToanVN.com
\(\mathop {\lim }\limits_{x \to + \infty } f(x) = 1\) nên \(y = 1\) là đường TCN của đồ thị hàm số \(y = f\left( x \right)\)
Chọn C
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số y = f(x) có đạo hàm trên (a ; b). Nếu f’(x) đổi dấu từ âm sang dương qua điểm x0 thì
Một khối chóp có đáy là đa giác \(n\)cạnh. Trong các mệnh đề sau đây, mệnh đề nào đúng?
Cho hàm số y = f(x) có bảng biến thiên như sau.
Hàm số đã cho nghịch biến trên khoảng nào sau đây ?
.png)
Cho khối hộp ABCD. A’B’C’D’. Gọi O là giao của AC và BD. Tính tỷ số thể tích của khối chóp O. A’B’C’D’ và khối chóp đã cho.
Giá trị cực đại của hàm số \(y = {x^3} - 12x - 1\).
Phép vị tự tỉ số \(k > 0\) biến khối chóp có thể tích \(V\) thành khối chóp có thể tích \(V'\). Khi đó:
Hàm số \(y = - {x^3} + 3x - 5\) đồng biến trên khoảng nào ?
Đường tiệm cận đứng và đường tiệm cận ngang của đồ thị hàm số \(y = \dfrac{{1 - 2x} }{ { - x + 2}}\) là:
Đáy của hình chóp \(S.ABCD\) là một hình vuông cạnh \(a\). Cạnh bên \(SA\) vuông góc với mặt đáy và có độ dài là \(a\). Thể tích khối tứ diện \(S.BCD\) bằng:
.png)