Lời giải của giáo viên
ToanVN.com
Mọi mặt phẳng đi qua tâm của mặt cầu đều là mặt phẳng đối xứng của mặt cầu.
Vậy có vô số mặt phẳng đối xứng.
Chọn D.
CÂU HỎI CÙNG CHỦ ĐỀ
Cho hàm số y = f(x) có đạo hàm trên (a ; b). Nếu f’(x) đổi dấu từ âm sang dương qua điểm x0 thì
Một khối chóp có đáy là đa giác \(n\)cạnh. Trong các mệnh đề sau đây, mệnh đề nào đúng?
Cho hàm số y = f(x) xác định trên khoảng \((0; + \infty )\) và thỏa mãn \(\mathop {\lim }\limits_{x \to + \infty } f(x) = 1\). Hãy chọn mệnh đề đúng trong các mệnh đề sau:
Cho hàm số y = f(x) có bảng biến thiên như sau.
Hàm số đã cho nghịch biến trên khoảng nào sau đây ?
.png)
Giá trị cực đại của hàm số \(y = {x^3} - 12x - 1\).
Cho khối hộp ABCD. A’B’C’D’. Gọi O là giao của AC và BD. Tính tỷ số thể tích của khối chóp O. A’B’C’D’ và khối chóp đã cho.
Hàm số \(y = - {x^3} + 3x - 5\) đồng biến trên khoảng nào ?
Phép vị tự tỉ số \(k > 0\) biến khối chóp có thể tích \(V\) thành khối chóp có thể tích \(V'\). Khi đó:
Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình vuông tại \(A\) và \(D\) thỏa mãn \(SA \bot \left( {ABCD} \right)\) và \(AB = 2AD = 2CD = 2a = \sqrt 2 SA\). Thể tích khối chóp \(S.BCD\) là:
Đáy của hình chóp \(S.ABCD\) là một hình vuông cạnh \(a\). Cạnh bên \(SA\) vuông góc với mặt đáy và có độ dài là \(a\). Thể tích khối tứ diện \(S.BCD\) bằng:
.png)