Cho hàm số \(y = {\log _2}{x^2}\). Khẳng định nào sau đây là sai?
A. Hàm số đồng biến trên \(\left( {0; + \infty } \right)\).
B. Hàm số nghịch biến trên \(\left( { - \infty ;0} \right)\).
C. Đồ thị hàm số có một tiệm cận ngang.
D. Đồ thị hàm số có một đường tiệm cận đứng.
Lời giải của giáo viên
ToanVN.com
TXĐ : \(D = \mathbb{R}\backslash \left\{ 0 \right\}\)
Ta có :
\(\begin{array}{l}y = {\log _2}{x^2}\\ \Rightarrow y' = \dfrac{{\left( {{x^2}} \right)'}}{{{x^2}\ln 2}} = \dfrac{{2x}}{{{x^2}\ln 2}}\end{array}\)
Ta thấy \(y' > 0 \Leftrightarrow x > 0\) nên hàm số đồng biến trên \(\left( {0; + \infty } \right)\)
\(y' < 0 \Leftrightarrow x < 0\) nên hàm số nghịch biến trên \(\left( { - \infty ;0} \right)\).
Lại có : \(\mathop {\lim }\limits_{x \to \pm \infty } y = + \infty \) nên hàm số đã cho không có tiệm cận ngang
Đồ thị hàm số có một tiệm cận đứng là \(x = 0\)
Chọn C
CÂU HỎI CÙNG CHỦ ĐỀ
Khoảng đồng biến của hàm số \(y = \sqrt {2x - {x^2}} \) là:
Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\). Cạnh bên \(SA = a\sqrt 6 \) và vuông góc với đáy \(\left( {ABCD} \right)\). Tính theo \(a\) diện tích mặt cầu ngoại tiếp khối chóp \(S.ABCD\)
Cho \({\log _{\dfrac{1}{2}}}\left( {\dfrac{1}{5}} \right) = a\). Khẳng định nào dưới đây đúng?
Số điểm cực trị của hàm số \(y = {\left| x \right|^3} - 4{x^2} + 3\) là
Tập xác định \(D\) của hàm số \(y = {\log _3}\left( {{{\log }_2}x} \right)\) là
Tìm tất cả các giá trị của tham số \(m\) để hàm số \(y = {x^3} - 3m{x^2} + 6mx + m\) có hai điểm cực trị.
Cho tứ diện \(ABCD\) có \(\Delta ABC\) là tam giác đều cạnh bằng \(a\). \(\Delta BCD\) vuông cân tại \(D\) và nằm trong mặt phẳng vuông góc với \(\left( {ABC} \right)\). Tính theo \(a\) thể tích của tứ diện \(ABCD\).
Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên
.png)
Khẳng định nào sau đây đúng ?
Cho hình chữ nhật \(ABCD\) có \(AB = 2AD\). Quay hình chữ nhật đã cho quanh \(AD\) và \(AB\) ta được 2 hình trụ tròn xoay có thể tích lần lượt là \({V_1},{V_2}\). Khẳng định nào dưới đây đúng?
Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy là \(\Delta ABC\) với \(AB = 2a,AC = a,\widehat {BAC} = 120^\circ \). Góc giữa \(\left( {A'BC} \right)\) và \(\left( {ABC} \right)\) bằng \(45^\circ \). Tính thể tích của khối lăng trụ \(ABC.A'B'C'\)
Hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:
.png)
Khẳng định nào dưới đây là đúng?
Tập xác định \(D\) của hàm số \(y = {\left( {x - 2} \right)^{\sqrt 2 }}\) là
Một hình đa diện có các mặt là các tam giác. Gọi \(M\) và \(C\) lần lượt là số mặt và số cạnh của hình đã diện đó. Khẳng định nào sau đây đúng?
Tiệm cận đứng của đồ thị hàm số \(y = \dfrac{{x - 1}}{{x + 1}}\) là đường thẳng có phương trình
Tính thể tích của khối lập phương \(ABCD.A'B'C'D'\), biết \(AC' = a\sqrt 6 \)