Cho hình chóp \(S.ABCD\) có đáy là hình vuông cạnh \(a\). Cạnh bên \(SA = a\sqrt 6 \) và vuông góc với đáy \(\left( {ABCD} \right)\). Tính theo \(a\) diện tích mặt cầu ngoại tiếp khối chóp \(S.ABCD\)
A. \({a^2}\sqrt 2 \)
B. \(8\pi {a^2}\)
C. \(2\pi {a^2}\)
D. \(2{a^2}\)
Lời giải của giáo viên
ToanVN.com
Gọi \(O\) là giao điểm của \(AC\) và \(BD\), \(I\) là trung điểm của \(SC\).
\(ABCD\) là hình vuông nên \(O\) là tâm đường tròn ngoại tiếp hình vuông \(ABCD\) và \(O\) là trung điểm \(AC\) và \(BD.\)
\(OI\) là đường trung bình trong tam giác \(SAC\) nên \(OI//SA\) mà \(SA \bot \left( {ABCD} \right)\) nên \(OI \bot \left( {ABCD} \right)\)
\(I\) nằm trên đường thẳng qua tâm \(O\) và vuông góc với mặt phẳng \(\left( {ABCD} \right)\) nên \(IA = IB = IC = ID\)
Mặt khác tam giác \(SAC\) vuông tại \(A\) có trung tuyến \(AI\) nên \(IA = \dfrac{1}{2}SC = SI = IC\)
Suy ra \(IS = IA = IB = IC = ID\) hay \(I\) là tâm mặt cầu ngoại tiếp khối chóp.
Ta có:
\(ABCD\) là hình vuông nên \(AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{a^2} + {a^2}} = \sqrt 2 a\)
Tam giác \(SAC\) vuông tại \(A\) nên \(SC = \sqrt {S{A^2} + A{C^2}} = \sqrt {6{a^2} + 2{a^2}} = 2\sqrt 2 a\)
\( \Rightarrow R = \dfrac{1}{2}SC = \sqrt 2 a\)
Diện tích của mặt cầu ngoại tiếp khối chóp là \(S = 4\pi {R^2} = 4\pi .{\left( {\sqrt 2 a} \right)^2} = 8\pi {a^2}\)
Chọn B
CÂU HỎI CÙNG CHỦ ĐỀ
Khoảng đồng biến của hàm số \(y = \sqrt {2x - {x^2}} \) là:
Cho \({\log _{\dfrac{1}{2}}}\left( {\dfrac{1}{5}} \right) = a\). Khẳng định nào dưới đây đúng?
Số điểm cực trị của hàm số \(y = {\left| x \right|^3} - 4{x^2} + 3\) là
Tìm tất cả các giá trị của tham số \(m\) để hàm số \(y = {x^3} - 3m{x^2} + 6mx + m\) có hai điểm cực trị.
Tập xác định \(D\) của hàm số \(y = {\log _3}\left( {{{\log }_2}x} \right)\) là
Cho tứ diện \(ABCD\) có \(\Delta ABC\) là tam giác đều cạnh bằng \(a\). \(\Delta BCD\) vuông cân tại \(D\) và nằm trong mặt phẳng vuông góc với \(\left( {ABC} \right)\). Tính theo \(a\) thể tích của tứ diện \(ABCD\).
Cho hàm số \(y = f\left( x \right)\) xác định, liên tục trên \(\mathbb{R}\) và có bảng biến thiên
.png)
Khẳng định nào sau đây đúng ?
Cho lăng trụ đứng \(ABC.A'B'C'\) có đáy là \(\Delta ABC\) với \(AB = 2a,AC = a,\widehat {BAC} = 120^\circ \). Góc giữa \(\left( {A'BC} \right)\) và \(\left( {ABC} \right)\) bằng \(45^\circ \). Tính thể tích của khối lăng trụ \(ABC.A'B'C'\)
Cho hình chữ nhật \(ABCD\) có \(AB = 2AD\). Quay hình chữ nhật đã cho quanh \(AD\) và \(AB\) ta được 2 hình trụ tròn xoay có thể tích lần lượt là \({V_1},{V_2}\). Khẳng định nào dưới đây đúng?
Hàm số \(y = f\left( x \right)\) có bảng biến thiên như sau:
.png)
Khẳng định nào dưới đây là đúng?
Một hình đa diện có các mặt là các tam giác. Gọi \(M\) và \(C\) lần lượt là số mặt và số cạnh của hình đã diện đó. Khẳng định nào sau đây đúng?
Gọi \(S\) là tập hợp các giá trị của tham số \(m\) để phương trình \({9^x} - 2m{.3^x} + {m^2} - 8m = 0\) có 2 nghiệm phân biệt \({x_1},{x_2}\) thỏa mãn \({x_1} + {x_2} = 2\). Tính tổng các phần tử của \(S\).
Tập xác định \(D\) của hàm số \(y = {\left( {x - 2} \right)^{\sqrt 2 }}\) là
Tiệm cận đứng của đồ thị hàm số \(y = \dfrac{{x - 1}}{{x + 1}}\) là đường thẳng có phương trình
Tính thể tích của khối lập phương \(ABCD.A'B'C'D'\), biết \(AC' = a\sqrt 6 \)