Cho hàm số y = f(x) có \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 0\) và \(\mathop {\lim }\limits_{x \to - \infty } f\left( x \right) = + \infty \). Khẳng định nào sau đây là khẳng định đúng?
A. Đồ thị hàm số không có tiệm cận ngang.
B. Đồ thị hàm số nằm phía trên trục hoành.
C. Đồ thị hàm số có một tiệm cận ngang là trục hoành.
D. Đồ thị hàm số có một tiệm cận đứng là đường thẳng y = 0
Lời giải của giáo viên
ToanVN.com
Ta có \(\mathop {\lim }\limits_{x \to + \infty } f\left( x \right) = 0 \Rightarrow y = 0\) là TCN.
Đáp án B sai vì chọn hàm \(y = \left\{ {\begin{array}{*{20}{l}} {{{\left( {\frac{1}{2}} \right)}^x}}&{;x \le - 1}\\ { - {{\left( {\frac{1}{2}} \right)}^x}}&{;x \ge 1} \end{array}} \right.\).
Vậy ta chỉ có đáp án C đúng.
CÂU HỎI CÙNG CHỦ ĐỀ
Với điểm O cố định thuộc mặt phẳng (P) cho trước, xét đường thẳng l thay đổi đi qua điểm O và tạo với mặt phẳng (P) một góc \({30^o}\). Tập hợp các đường thẳng trong không gian là gì?
Cho hai điểm A, B phân biệt. Tập hợp tâm những mặt cầu đi qua A và B là
Tính thể tích của khối lăng trụ tam giác đều có tất cả các cạnh bằng a
Tính khoảng cách d giữa hai điểm cực trị của đồ thị hàm số \(y = \left( {x + 1} \right){\left( {x - 2} \right)^2}\).
Tìm tất cả các giá trị thực của tham số m để phương trình \(2{x^3} - 3{x^2} = 2m + 1\) có đúng hai nghiệm phân biệt.
Giá trị của \({\log _a}\left( {\dfrac{{a^2}\root 3 \of {{a^2}} \root 5 \of {{a^4}} }{{\root {15} \of {{a^7}} }}} \right)\) bằng bao nhiêu?
Biết rằng đồ thị hàm số \(y = {x^3} - 3{x^2} + 2x - 1\) cắt đồ thị hàm số \(y = {x^2} - 3x + 1\) tại hai điểm phân biệt A và B. Tính độ dài đoạn thẳng AB.
Gọi \({y_{{\rm{CD}}}},{\rm{ }}{y_{{\rm{CT}}}}\) lần lượt là giá trị cực đại và giá trị cực tiểu của hàm số \(y = {x^3} - 3x\). Mệnh đề nào sau đây là đúng?
Giải bất phương trình mũ \({1 \over {{3^x} + 5}} \le {1 \over {{3^{x + 1}} - 1}}\).
Cho hàm số y = f(x) xác định, liên tục trên R và có bảng biến thiên như hình vẽ:
Mệnh đề nào dưới đây đúng?
Tìm tất cả các giá trị của tham số m để đồ thị hàm số \(y = \left( {x - 1} \right)\left( {{x^2} + mx + m} \right)\) cắt trục hoành tại ba điểm phân biệt.
Tập giá trị của hàm số \(f\left( x \right) = x + \frac{9}{x}\) với \(x \in \left[ {2;4} \right]\) là đoạn [a;b]. Tính P = b - a.