Cho hàm số \(y = f\left( x \right)\) là hàm số chẵn, liên tục trên đoạn \(\left[ { - 2;2} \right]\) và \(\int\limits_{ - 2}^2 {\frac{{f\left( x \right)}}{{{{2018}^x} + 1}}dx = 2020} \). Khi đó, tích phân \(\int\limits_0^2 {\left( {1 + f\left( x \right)} \right)dx} \) bằng:
A. \(1012\)
B. \(2022\)
C. \(2020\)
D. \(2019\)
Lời giải của giáo viên
ToanVN.com
\(\int\limits_{ - 2}^2 {\frac{{f\left( x \right)}}{{{{2018}^x} + 1}}dx = 2020} \,\,(1) \Rightarrow \int\limits_2^{ - 2} {\frac{{f\left( { - x} \right)}}{{{{2018}^{ - x}} + 1}}\left( { - dx} \right) = 2020 \Leftrightarrow } \int\limits_{ - 2}^2 {\frac{{{{2018}^x}f\left( x \right)}}{{{{2018}^x} + 1}}dx = 2020} \,\,\,(2)\)
(do \(y = f\left( x \right)\) là hàm số chẵn, liên tục trên đoạn \(\left[ { - 2;2} \right]\))
Cộng (1) với (2):
\(\begin{array}{l}\,\,\,\,\,\,\int\limits_{ - 2}^2 {\frac{{f\left( x \right)}}{{{{2018}^x} + 1}}dx + } \,\int\limits_{ - 2}^2 {\frac{{{{2018}^x}f\left( x \right)}}{{{{2018}^x} + 1}}dx = 4040} \\ \Leftrightarrow \int\limits_{ - 2}^2 {\left( {\frac{{f\left( x \right)}}{{{{2018}^x} + 1}} + \frac{{{{2018}^x}f\left( x \right)}}{{{{2018}^x} + 1}}} \right)dx} = 4040 \Leftrightarrow \int\limits_{ - 2}^2 {f\left( x \right)dx} = 4040\end{array}\)
Lại do \(y = f\left( x \right)\) là hàm chẵn nên \(\int\limits_{ - 2}^2 {f\left( x \right)dx} = 2.\int\limits_0^2 {f\left( x \right)dx} \Rightarrow \int\limits_0^2 {f\left( x \right)dx} = 2020\)
Ta có: \(\int\limits_0^2 {\left( {1 + f\left( x \right)} \right)dx} = \int\limits_0^2 {dx} + \int\limits_0^2 {f\left( x \right)dx} = 2 + 2020 = 2022\).
Chọn: B
CÂU HỎI CÙNG CHỦ ĐỀ
Cho z là một số phức (không phải là số thực) sao cho số phức \(\frac{1}{{\left| z \right| - z}}\) có phần thực bằng 4. Tính \(\left| z \right|\)?
Môđun của số phức \(z = bi,\left( {b \in \mathbb{R}} \right)\) là:
Trong không gian với hệ tọa độ Oxyz, cho \(A\left( {3; - 2;4} \right),\,B\left( {3;1;2} \right)\). Tọa độ vectơ \(\overrightarrow {BA} \) là:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right)\) qua \(A\left( {1;2; - 1} \right)\) và chứa đường thẳng \(d:\frac{{x - 1}}{2} = \frac{{y + 1}}{1} = \frac{z}{{ - 2}}\) có phương trình là:
Trong không gian với hệ tọa độ Oxyz, cho điểm \(M\left( {1; - 2; - 3} \right)\). Tọa độ điểm M’ đối xứng với điểm M qua mặt phẳng \(\left( {Oxz} \right)\) là:
Trong không gian với hệ tọa độ Oxyz, tập hợp những điểm biểu diễn số phức z thỏa mãn \(\left| {z - 1} \right| + \left| {z + 2i} \right| = 2\sqrt 2 \) là:
Tích phân \(I = \int\limits_0^1 {\frac{1}{{2x + 1}}dx} \) bằng:
Cho \({z_1},{z_2}\) là hai số phức tùy ý, khẳng định nào sau đây sai?
Nguyên hàm của hàm số \(f\left( x \right) = {e^{3x}}{.3^x}\) là:
Trong không gian với hệ tọa độ Oxyz, cho \(\left( S \right)\) là mặt cầu có tâm \(I\left( {2;1; - 1} \right)\) và tiếp xúc mặt phẳng \(\left( \alpha \right):2x - 2y - z + 3 = 0\)
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng \(\left( P \right):2x + 3y - z + 4 = 0\). Biết \(\overrightarrow n = \left( {1;b;c} \right)\) là một vectơ pháp tuyến của \(\left( P \right)\). Tính tổng \(T = b + c\) bằng:
Nguyên hàm của hàm số \(f\left( x \right) = {x^2} - 3x + \frac{1}{x}\) là:
Trong không gian với hệ tọa độ Oxyz, phương trình nào sau đây là phương trình của một mặt cầu:
Cho số phức z là số thuần ảo khác 0, mệnh đề nào sau đây đúng?
Cho hàm số \(y = f\left( x \right)\) liên tục và luôn âm trên đoạn \(\left[ {a;b} \right]\). Diện tích hình phẳng giới hạn bởi đồ thị hàm số \(y = f\left( x \right)\), hai đường thẳng \(x = a,x = b\) và trục hoành được tính bởi công thức: